作为this和this问题的后续,我想使用幂级数来近似一些偏微分方程。第一步,我需要生成符号多元多项式,给定一个 numpy ndarray。
考虑下面的多项式:
我想取
m
的ndarray
维D=[d1,...,dm]
,其中dj
是非负整数,并以符号表达式的形式生成符号多元多项式。符号表达式由以下形式的单项式组成:
Fo 例如,如果
D=[2,3]
输出应该是
对于这种特定情况,我可以嵌套两个
for loops
并添加表达式。但我不知道如何处理任意长度的D
。如果我可以在不使用 for 循环的情况下生成 D
和 A
的 X
维 ndarray,那么我可以使用 np.sum(np.multiply(A,X))
作为 Frobenius 内积 来获得我需要的东西。
symarray
和 itertools.product
为此:
from sympy import *
import itertools
D = (3, 4, 2, 3)
a = symarray("a", D)
x = symarray("x", len(D))
prod_iterator = itertools.product(*map(range, D))
result = Add(*[a[p]*Mul(*[v**d for v, d in zip(x, p)]) for p in prod_iterator])
结果是
a_0_0_0_0 + a_0_0_0_1*x_3 + a_0_0_0_2*x_3**2 + a_0_0_1_0*x_2 + a_0_0_1_1*x_2*x_3 + a_0_0_1_2*x_2*x_3**2 + a_0_1_0_0*x_1 + a_0_1_0_1*x_1*x_3 + a_0_1_0_2*x_1*x_3**2 + a_0_1_1_0*x_1*x_2 + a_0_1_1_1*x_1*x_2*x_3 + a_0_1_1_2*x_1*x_2*x_3**2 + a_0_2_0_0*x_1**2 + a_0_2_0_1*x_1**2*x_3 + a_0_2_0_2*x_1**2*x_3**2 + a_0_2_1_0*x_1**2*x_2 + a_0_2_1_1*x_1**2*x_2*x_3 + a_0_2_1_2*x_1**2*x_2*x_3**2 + a_0_3_0_0*x_1**3 + a_0_3_0_1*x_1**3*x_3 + a_0_3_0_2*x_1**3*x_3**2 + a_0_3_1_0*x_1**3*x_2 + a_0_3_1_1*x_1**3*x_2*x_3 + a_0_3_1_2*x_1**3*x_2*x_3**2 + a_1_0_0_0*x_0 + a_1_0_0_1*x_0*x_3 + a_1_0_0_2*x_0*x_3**2 + a_1_0_1_0*x_0*x_2 + a_1_0_1_1*x_0*x_2*x_3 + a_1_0_1_2*x_0*x_2*x_3**2 + a_1_1_0_0*x_0*x_1 + a_1_1_0_1*x_0*x_1*x_3 + a_1_1_0_2*x_0*x_1*x_3**2 + a_1_1_1_0*x_0*x_1*x_2 + a_1_1_1_1*x_0*x_1*x_2*x_3 + a_1_1_1_2*x_0*x_1*x_2*x_3**2 + a_1_2_0_0*x_0*x_1**2 + a_1_2_0_1*x_0*x_1**2*x_3 + a_1_2_0_2*x_0*x_1**2*x_3**2 + a_1_2_1_0*x_0*x_1**2*x_2 + a_1_2_1_1*x_0*x_1**2*x_2*x_3 + a_1_2_1_2*x_0*x_1**2*x_2*x_3**2 + a_1_3_0_0*x_0*x_1**3 + a_1_3_0_1*x_0*x_1**3*x_3 + a_1_3_0_2*x_0*x_1**3*x_3**2 + a_1_3_1_0*x_0*x_1**3*x_2 + a_1_3_1_1*x_0*x_1**3*x_2*x_3 + a_1_3_1_2*x_0*x_1**3*x_2*x_3**2 + a_2_0_0_0*x_0**2 + a_2_0_0_1*x_0**2*x_3 + a_2_0_0_2*x_0**2*x_3**2 + a_2_0_1_0*x_0**2*x_2 + a_2_0_1_1*x_0**2*x_2*x_3 + a_2_0_1_2*x_0**2*x_2*x_3**2 + a_2_1_0_0*x_0**2*x_1 + a_2_1_0_1*x_0**2*x_1*x_3 + a_2_1_0_2*x_0**2*x_1*x_3**2 + a_2_1_1_0*x_0**2*x_1*x_2 + a_2_1_1_1*x_0**2*x_1*x_2*x_3 + a_2_1_1_2*x_0**2*x_1*x_2*x_3**2 + a_2_2_0_0*x_0**2*x_1**2 + a_2_2_0_1*x_0**2*x_1**2*x_3 + a_2_2_0_2*x_0**2*x_1**2*x_3**2 + a_2_2_1_0*x_0**2*x_1**2*x_2 + a_2_2_1_1*x_0**2*x_1**2*x_2*x_3 + a_2_2_1_2*x_0**2*x_1**2*x_2*x_3**2 + a_2_3_0_0*x_0**2*x_1**3 + a_2_3_0_1*x_0**2*x_1**3*x_3 + a_2_3_0_2*x_0**2*x_1**3*x_3**2 + a_2_3_1_0*x_0**2*x_1**3*x_2 + a_2_3_1_1*x_0**2*x_1**3*x_2*x_3 + a_2_3_1_2*x_0**2*x_1**3*x_2*x_3**2
备注:
symarray
取决于NumPy
,但这对你来说似乎不是问题。如果是的话,我会使用 itertools.product
Add(*[...])
比sum([...])
更有效地形成具有大量项的符号和,请参阅SymPy问题13945。