我正在尝试创建一个最佳的班次时间表,员工被分配到班次。产出的目标应该是花费最少的钱。棘手的部分是我需要考虑具体的约束。这些是:
1) At any given time period, you must meet the minimum staffing requirements
2) A person has a minimum and maximum amount of hours they can do
3) An employee can only be scheduled to work within their available hours
4) A person can only work one shift per day
staff_availability df
包含可供选择['Person']
的员工,他们可以工作的最短 - 最长时间['MinHours']
-['MaxHours']
,他们获得多少钱['HourlyWage']
,以及可用性,表示为小时['Availability_Hr']
和15分钟段['Availability_15min_Seg']
。
注意:如果不需要,可以为员工分配轮班。他们只是可以这样做。
staffing_requirements df
包含时间['Time']
和工作人员在这些时期需要['People']
。
该脚本返回df
'availability_per_member'
,显示每个时间点有多少员工可用。所以1
表示可以安排,0
表示不可用。然后,它旨在分配换班时间,同时使用pulp
来计算约束。
我正在获得输出但是班次不会连续应用于员工。
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import pulp
staffing_requirements = pd.DataFrame({
'Time' : ['0/1/1900 8:00:00','0/1/1900 9:59:00','0/1/1900 10:00:00','0/1/1900 12:29:00','0/1/1900 12:30:00','0/1/1900 13:00:00','0/1/1900 13:02:00','0/1/1900 13:15:00','0/1/1900 13:20:00','0/1/1900 18:10:00','0/1/1900 18:15:00','0/1/1900 18:20:00','0/1/1900 18:25:00','0/1/1900 18:45:00','0/1/1900 18:50:00','0/1/1900 19:05:00','0/1/1900 19:07:00','0/1/1900 21:57:00','0/1/1900 22:00:00','0/1/1900 22:30:00','0/1/1900 22:35:00','1/1/1900 3:00:00','1/1/1900 3:05:00','1/1/1900 3:20:00','1/1/1900 3:25:00'],
'People' : [1,1,2,2,3,3,2,2,3,3,4,4,3,3,2,2,3,3,4,4,3,3,2,2,1],
})
staff_availability = pd.DataFrame({
'Person' : ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11'],
'MinHours' : [3,3,3,3,3,3,3,3,3,3,3],
'MaxHours' : [10,10,10,10,10,10,10,10,10,10,10],
'HourlyWage' : [26,26,26,26,26,26,26,26,26,26,26],
'Availability_Hr' : ['8-18','8-18','8-18','9-18','9-18','9-18','12-1','12-1','17-3','17-3','17-3'],
'Availability_15min_Seg' : ['1-41','1-41','1-41','5-41','5-41','5-41','17-69','17-79','37-79','37-79','37-79'],
})
staffing_requirements['Time'] = ['/'.join([str(int(x.split('/')[0])+1)] + x.split('/')[1:]) for x in staffing_requirements['Time']]
staffing_requirements['Time'] = pd.to_datetime(staffing_requirements['Time'], format='%d/%m/%Y %H:%M:%S')
formatter = dates.DateFormatter('%Y-%m-%d %H:%M:%S')
# 15 Min
staffing_requirements = staffing_requirements.groupby(pd.Grouper(freq='15T',key='Time'))['People'].max().ffill()
staffing_requirements = staffing_requirements.reset_index(level=['Time'])
staffing_requirements.index = range(1, len(staffing_requirements) + 1)
staff_availability.set_index('Person')
staff_costs = staff_availability.set_index('Person')[['MinHours', 'MaxHours', 'HourlyWage']]
availability = staff_availability.set_index('Person')[['Availability_15min_Seg']]
availability[['first_15min', 'last_15min']] = availability['Availability_15min_Seg'].str.split('-', expand=True).astype(int)
availability_per_member = [pd.DataFrame(1, columns=[idx], index=range(row['first_15min'], row['last_15min']+1))
for idx, row in availability.iterrows()]
availability_per_member = pd.concat(availability_per_member, axis='columns').fillna(0).astype(int).stack()
availability_per_member.index.names = ['Timeslot', 'Person']
availability_per_member = (availability_per_member.to_frame()
.join(staff_costs[['HourlyWage']])
.rename(columns={0: 'Available'}))
''' Generate shift times based off availability '''
prob = pulp.LpProblem('CreateStaffing', pulp.LpMinimize) # Minimize costs
timeslots = staffing_requirements.index
persons = availability_per_member.index.levels[1]
# A member is either staffed or is not at a certain timeslot
staffed = pulp.LpVariable.dicts("staffed",
((timeslot, staffmember) for timeslot, staffmember
in availability_per_member.index),
lowBound=0,
cat='Binary')
# Objective = cost (= sum of hourly wages)
prob += pulp.lpSum(
[staffed[timeslot, staffmember] * availability_per_member.loc[(timeslot, staffmember), 'HourlyWage']
for timeslot, staffmember in availability_per_member.index]
)
# Staff the right number of people
for timeslot in timeslots:
prob += (sum([staffed[(timeslot, person)] for person in persons])
== staffing_requirements.loc[timeslot, 'People'])
# Do not staff unavailable persons
for timeslot in timeslots:
for person in persons:
if availability_per_member.loc[(timeslot, person), 'Available'] == 0:
prob += staffed[timeslot, person] == 0
# Do not underemploy people
for person in persons:
prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
>= staff_costs.loc[person, 'MinHours']*4) # timeslot is 15 minutes => 4 timeslots = hour
# Do not overemploy people
for person in persons:
prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
<= staff_costs.loc[person, 'MaxHours']*4) # timeslot is 15 minutes => 4 timeslots = hour
prob.solve()
print(pulp.LpStatus[prob.status])
output = []
for timeslot, staffmember in staffed:
var_output = {
'Timeslot': timeslot,
'Staffmember': staffmember,
'Staffed': staffed[(timeslot, staffmember)].varValue,
}
output.append(var_output)
output_df = pd.DataFrame.from_records(output)#.sort_values(['timeslot', 'staffmember'])
output_df.set_index(['Timeslot', 'Staffmember'], inplace=True)
if pulp.LpStatus[prob.status] == 'Optimal':
print(output_df)
下面是前两个小时的输出(8个15分钟时隙)。问题是轮班不是连续的。计划在第一个8
时段的员工主要是不同的。我会在前2个小时内开始有5个人。员工每天只能工作一班。
Timeslot C
0 1 C2
1 2 C2
2 3 C1
3 4 C3
4 5 C6
5 6 C1
6 7 C5
7 8 C2
以下是您修改过的问题的答案,即如何添加要求每位员工连续工作的约束。
我建议你添加以下约束(这里用代数编写):
x[t+1,p] <= x[t,p] + (1 - (1/T) * sum_{s=1}^{t-1} x[s,p]) for all p, for all t < T
其中x
是你的staffed
变量(这里写为x
的紧凑性),t
是时间索引,T
是时间段的数量,p
是员工索引。
约束的逻辑是:如果x[t,p] = 0
(员工不在t
期间工作)和x[s,p] = 1
任何s < t
(员工在任何前期工作),那么x[t+1,p]
必须= 0
(员工不能在t+1
时期工作。因此,一旦员工停止工作,他们就无法重新开始。请注意,如果x[t,p] = 1
或x[s,p] = 0
为每个s < t
,那么x[t+1,p]
可以等于1
。
这是我在pulp
中对此约束的实现:
# If an employee works and then stops, they can't start again
num_slots = max(timeslots)
for timeslot in timeslots:
if timeslot < num_slots:
for person in persons:
prob += staffed[timeslot+1, person] <= staffed[timeslot, person] + \
(1 - (1./num_slots) *
sum([staffed[(s, person)] for s in timeslots if s < timeslot]))
我跑了模特,得到了:
Optimal
Staffed
Timeslot Staffmember
1 C2 1.0
2 C2 1.0
3 C2 1.0
4 C2 1.0
5 C2 1.0
6 C2 1.0
7 C2 1.0
8 C2 1.0
9 C2 1.0
C6 1.0
10 C2 1.0
C6 1.0
11 C2 1.0
C6 1.0
12 C2 1.0
C6 1.0
13 C3 1.0
C6 1.0
14 C3 1.0
C6 1.0
因此,员工在连续的时间段内工作。
请注意,新约束会使模型慢一点。它仍然在<30秒左右解决。但是如果你要解决更大的实例,你可能不得不重新考虑约束。
注意:这是对问题早期版本的回答。
我认为解算器返回的解决方案是正确的;每个人都在工作他们的MinHours
,他们只是不连续。我跑了你的代码然后说
for person in persons:
print("{}: {}".format(person, sum([staffed[(timeslot, person)].value() for timeslot in timeslots])))
得到了:
C1: 12.0
C2: 12.0
C3: 12.0
C4: 20.0
C5: 23.0
C6: 18.0
C7: 22.0
C8: 29.0
C9: 22.0
C10: 27.0
C11: 32.0
所以每个人都至少工作12班,即3个小时。
如果您希望班次是连续的(即,一个人不能工作1号槽然后插槽3),那么解决这个问题的典型方法是使用一个决策变量来说明每个员工开始轮班的时间,而不是一个变量,指定它们工作的每个时间段。然后,引入一个像a[j][t]
这样的参数,如果在1
位置开始转换的员工在插槽j
中工作,则等于qazxswpoi。从那里,您可以计算谁在哪个位置工作。
将t
设置为5时问题不可行的原因是它迫使太多人在某些时间内工作。例如,6个人必须在时隙41之前完成他们的班次。这意味着在插槽41之前需要处理6 x 4 x 5 = 120个人插槽。但是在插槽1和41之间仅需要97个人插槽。
假设人员配置系统允许,可以通过将“人员合适人数”约束更改为MinHours
而不是>=
来解决此问题。 (如果不是,那么你的手上只有一个不可行的实例。)
(顺便说一句 - 您可能对==
上建议的新Stack Exchange站点感兴趣。我们将会遇到像这样的问题。:-))