确定值的分配-Python

问题描述 投票:7回答:2

我正在尝试创建最佳的轮班时间表,在该时间表中将员工分配到轮班时间。输出应旨在花费最少的钱。棘手的部分是我需要考虑特定的约束。这些是:

1) At any given time period, you must meet the minimum staffing requirements
2) A person has a minimum and maximum amount of hours they can do
3) An employee can only be scheduled to work within their available hours
4) A person can only work one shift per day

staff_availability df包含从['Person']中选择的员工,可用的最小-最大工作时间['MinHours']-['MaxHours'],获得的薪水['HourlyWage']和可用性,以小时数['Availability_Hr']表示。 ]和15分钟的段['Availability_15min_Seg']

注意:如果不需要,不需要分配可用的员工轮班。他们只是可以这样做。

staffing_requirements df包含一天中的时间['Time']和在此期间需要的工作人员['People']

脚本返回一个df 'availability_per_member',它显示每个时间点有多少雇员。因此,1指示有待调度,而0指示不可用。然后,其目标是分配班次,同时使用pulp考虑约束。

我正在获得输出,但轮班时间未连续应用于员工。

我没有达到第四个约束,因为员工每天只能轮班工作一次

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import pulp

staffing_requirements = pd.DataFrame({
    'Time' : ['0/1/1900 8:00:00','0/1/1900 9:59:00','0/1/1900 10:00:00','0/1/1900 12:29:00','0/1/1900 12:30:00','0/1/1900 13:00:00','0/1/1900 13:02:00','0/1/1900 13:15:00','0/1/1900 13:20:00','0/1/1900 18:10:00','0/1/1900 18:15:00','0/1/1900 18:20:00','0/1/1900 18:25:00','0/1/1900 18:45:00','0/1/1900 18:50:00','0/1/1900 19:05:00','0/1/1900 19:07:00','0/1/1900 21:57:00','0/1/1900 22:00:00','0/1/1900 22:30:00','0/1/1900 22:35:00','1/1/1900 3:00:00','1/1/1900 3:05:00','1/1/1900 3:20:00','1/1/1900 3:25:00'],                 
    'People' : [1,1,2,2,3,3,2,2,3,3,4,4,3,3,2,2,3,3,4,4,3,3,2,2,1],                      
     })

staff_availability = pd.DataFrame({
    'Person' : ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11'],                 
    'MinHours' : [3,3,3,3,3,3,3,3,3,3,3],    
    'MaxHours' : [10,10,10,10,10,10,10,10,10,10,10],                 
    'HourlyWage' : [26,26,26,26,26,26,26,26,26,26,26],  
    'Availability_Hr' : ['8-18','8-18','8-18','9-18','9-18','9-18','12-1','12-1','17-3','17-3','17-3'],                              
    'Availability_15min_Seg' : ['1-41','1-41','1-41','5-41','5-41','5-41','17-69','17-79','37-79','37-79','37-79'],                              
    })

staffing_requirements['Time'] = ['/'.join([str(int(x.split('/')[0])+1)] + x.split('/')[1:]) for x in staffing_requirements['Time']]
staffing_requirements['Time'] = pd.to_datetime(staffing_requirements['Time'], format='%d/%m/%Y %H:%M:%S')
formatter = dates.DateFormatter('%Y-%m-%d %H:%M:%S') 

# 15 Min
staffing_requirements = staffing_requirements.groupby(pd.Grouper(freq='15T',key='Time'))['People'].max().ffill()
staffing_requirements = staffing_requirements.reset_index(level=['Time'])

staffing_requirements.index = range(1, len(staffing_requirements) + 1) 

staff_availability.set_index('Person')

staff_costs = staff_availability.set_index('Person')[['MinHours', 'MaxHours', 'HourlyWage']]
availability = staff_availability.set_index('Person')[['Availability_15min_Seg']]
availability[['first_15min', 'last_15min']] =  availability['Availability_15min_Seg'].str.split('-', expand=True).astype(int)

availability_per_member =  [pd.DataFrame(1, columns=[idx], index=range(row['first_15min'], row['last_15min']+1))
 for idx, row in availability.iterrows()]

availability_per_member = pd.concat(availability_per_member, axis='columns').fillna(0).astype(int).stack()
availability_per_member.index.names = ['Timeslot', 'Person']
availability_per_member = (availability_per_member.to_frame()
                        .join(staff_costs[['HourlyWage']])
                        .rename(columns={0: 'Available'}))


''' Generate shift times based off availability  '''

prob = pulp.LpProblem('CreateStaffing', pulp.LpMinimize) # Minimize costs

timeslots = staffing_requirements.index
persons = availability_per_member.index.levels[1]

# A member is either staffed or is not at a certain timeslot
staffed = pulp.LpVariable.dicts("staffed",
                                   ((timeslot, staffmember) for timeslot, staffmember 
                                    in availability_per_member.index),
                                     lowBound=0,
                                     cat='Binary')

# Objective = cost (= sum of hourly wages)                              
prob += pulp.lpSum(
    [staffed[timeslot, staffmember] * availability_per_member.loc[(timeslot, staffmember), 'HourlyWage'] 
    for timeslot, staffmember in availability_per_member.index]
)

# Staff the right number of people
for timeslot in timeslots:
    prob += (sum([staffed[(timeslot, person)] for person in persons]) 
    == staffing_requirements.loc[timeslot, 'People'])

# Do not staff unavailable persons
for timeslot in timeslots:
    for person in persons:
        if availability_per_member.loc[(timeslot, person), 'Available'] == 0:
            prob += staffed[timeslot, person] == 0

# Do not underemploy people
for person in persons:
    prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
    >= staff_costs.loc[person, 'MinHours']*4) # timeslot is 15 minutes => 4 timeslots = hour

# Do not overemploy people
for person in persons:
    prob += (sum([staffed[(timeslot, person)] for timeslot in timeslots])
    <= staff_costs.loc[person, 'MaxHours']*4) # timeslot is 15 minutes => 4 timeslots = hour


prob.solve()
print(pulp.LpStatus[prob.status])

output = []
for timeslot, staffmember in staffed:
    var_output = {
        'Timeslot': timeslot,
        'Staffmember': staffmember,
        'Staffed': staffed[(timeslot, staffmember)].varValue,
    }
    output.append(var_output)
output_df = pd.DataFrame.from_records(output)#.sort_values(['timeslot', 'staffmember'])
output_df.set_index(['Timeslot', 'Staffmember'], inplace=True)
if pulp.LpStatus[prob.status] == 'Optimal':
    print(output_df)

下面是前两个小时(8个15分钟的时隙)的输出。问题是这些转变不是连续的。在第一个8时隙安排的员工主要不同。在最初的2小时内,我将有5个人开始。员工每天只能轮班一次。

   Timeslot   C
0         1  C2
1         2  C2
2         3  C1
3         4  C3
4         5  C6
5         6  C1
6         7  C5
7         8  C2
python pandas linear-programming pulp integer-programming
2个回答
2
投票

这是您修改后的问题的答案,即,如何添加要求每个员工连续工作的约束。

我建议您添加以下约束(以代数形式写在这里):

x[t+1,p] <= x[t,p] + (1 - (1/T) * sum_{s=1}^{t-1} x[s,p])    for all p, for all t < T

其中x是您的staffed变量(为简洁起见,在此处写为x),t是时间索引,T是时间段数,p是员工索引。

约束的逻辑是:如果x[t,p] = 0(员工不在t期间工作)和x[s,p] = 1any s < t(员工在先前的任何时期工作),则x[t+1,p]必须为= 0(员工不能在t+1期间内工作。因此,一旦员工停止工作,便无法重新开始工作。请注意,如果x[t,p] = 1 or x[s,p] = 0s < t,则x[t+1,p]等于1

这是我在pulp中对此约束的实现:

# If an employee works and then stops, they can't start again
num_slots = max(timeslots)
for timeslot in timeslots:
    if timeslot < num_slots:
        for person in persons:
            prob += staffed[timeslot+1, person] <= staffed[timeslot, person] + \
                (1 - (1./num_slots) *
                 sum([staffed[(s, person)] for s in timeslots if s < timeslot]))

我运行模型并得到:

Optimal
                      Staffed
Timeslot Staffmember         
1        C2               1.0
2        C2               1.0
3        C2               1.0
4        C2               1.0
5        C2               1.0
6        C2               1.0
7        C2               1.0
8        C2               1.0
9        C2               1.0
         C6               1.0
10       C2               1.0
         C6               1.0
11       C2               1.0
         C6               1.0
12       C2               1.0
         C6               1.0
13       C3               1.0
         C6               1.0
14       C3               1.0
         C6               1.0

等因此,员工在连续的时间段内工作。

请注意,新约束会稍微放慢模型的速度。它仍然可以在不到30秒的时间内解决。但是,如果要解决更大的实例,则可能必须重新考虑约束条件。


4
投票

Note:这是对该问题的早期版本的答案。


我认为求解器返回的解是正确的;每个人[[是都在MinHours工作,但他们不是连续的。我运行了您的代码,然后说

for person in persons: print("{}: {}".format(person, sum([staffed[(timeslot, person)].value() for timeslot in timeslots])))
并且得到:

C1: 12.0 C2: 12.0 C3: 12.0 C4: 20.0 C5: 23.0 C6: 18.0 C7: 22.0 C8: 29.0 C9: 22.0 C10: 27.0 C11: 32.0

所以每个人都至少工作12个班次,即3个小时。

[如果您希望轮班是连续的(即,一个人不能同时在第一档和第三档工作),那么典型的处理方法是使用一个决策变量,该变量说明每个员工什么时候开始轮班,而不是指定他们在每个时段工作的变量。然后,引入一个类似a[j][t]的参数,如果在插槽1开始上班的员工正在插槽j中工作,则该参数等于t。从那里,您可以计算出哪些时段谁在工作。

MinHours设置为5时,该问题不可行的原因是,这迫使太多人在某些时间工作。例如,必须有6个人在41时隙之前完成轮班。这意味着6 x 4 x 5 = 120时隙需要在41时隙之前进行工作。但是在1时隙和41时隙之间仅需要97个人时隙。] >

可以通过将人员编制允许的“职员人数正确”约束更改为>=而不是==来解决此问题。 (如果不是,那么您手上只有一个不可行的实例。)

(顺便说一下,您可能对Operations Research and Analytics上拟议的新Stack Exchange网站感兴趣。我们将在那边解决像这样的问题。:-)]]

© www.soinside.com 2019 - 2024. All rights reserved.