我试图使用特征向量和欧氏距离作为相似度测量来匹配2个网格的关键点。
我尝试的,这里是一个简单的例子,我做了一个主数据的例子。
a = [0,1,4,6]
fv_a = [[2.1,4],
[0.7,3.1],
[2.23,6],
[0,1.11]]
b = [1,3,0,4]
fv_b = [[0.7,3.1],
[4.1,3.3],
[2.1,4],
[2.23,6]]
fv_a = (fv_a - np.min(fv_a)) / np.ptp(fv_a)
fv_b = (fv_b - np.min(fv_b)) / np.ptp(fv_b)
distances = scipy.spatial.distance.cdist(fv_a,fv_b)
print(distances)
# print(np.amax(distances,1))
# print(np.argmax(distances,1))
matched = np.argmax(distances,1)
print(matched)
for i,j in enumerate(matched):
print(i, "linked to : ",j)
print("point in a",a[i]," is matched to: ",b[j])
所以重点是,对于每一个点 a 我有一个它的特征向量,用以下方式表示 fv_a 我想把它和 b
但结果是这样的。
[0.1329895 0.52549136 0.18161024 0.51302967]
[0.6614612 0.57648771 0.39237617 0.08298742]
[0.26783019 0.71056665 0.5111808 0.86461593]]
[0 1 0 3]
0 linked to : 0
point in a 0 is matched to: 1
1 linked to : 1
point in a 1 is matched to: 3
2 linked to : 0
point in a 4 is matched to: 1
3 linked to : 3
point in a 6 is matched to: 4
这是不正确的,因为0应该匹配0,1应该匹配1,等等... ...
请问我做错了什么?
是的,我正在尝试做 一对一. 有什么好的建议吗?