我有一个 xarray.Dataset,看起来像:
print(ds2)
<xarray.Dataset>
Dimensions: (time: 46, latitude: 360, longitude: 720)
Coordinates:
* time (time) datetime64[ns] 1976-01-01 1977-01-01 ... 2021-01-01
* latitude (latitude) float64 89.75 89.25 88.75 ... -88.75 -89.25 -89.75
* longitude (longitude) float64 -179.8 -179.2 -178.8 ... 178.8 179.2 179.8
Data variables:
Glacier (time, latitude, longitude) float64 dask.array<chunksize=(1, 360, 720), meta=np.ndarray>
Uncertainty (time, latitude, longitude) float64 dask.array<chunksize=(1, 360, 720), meta=np.ndarray>
我也有一个具有相似尺寸的光栅:
print(np.shape(rgi_raster))
(1, 360, 720)
如何将 rgi_raster 添加到 xarray.Dataset 中,以便它在 Glacier 和 Uncertainty 变量上具有相同的时间、纬度、经度坐标?
我尝试过:
ds2=ds2.assign(rgi_raster=rgi_raster)
但这给出了:
<xarray.Dataset>
Dimensions: (time: 46, latitude: 360, longitude: 720, band: 1, x: 720,
y: 360)
Coordinates:
* time (time) datetime64[ns] 1976-01-01 1977-01-01 ... 2021-01-01
* latitude (latitude) float64 89.75 89.25 88.75 ... -88.75 -89.25 -89.75
* longitude (longitude) float64 -179.8 -179.2 -178.8 ... 178.8 179.2 179.8
* band (band) int64 1
* x (x) float64 -179.8 -179.2 -178.8 -178.2 ... 178.8 179.2 179.8
* y (y) float64 -89.75 -89.25 -88.75 -88.25 ... 88.75 89.25 89.75
spatial_ref int64 0
Data variables:
Glacier (time, latitude, longitude) float64 dask.array<chunksize=(1, 360, 720), meta=np.ndarray>
Uncertainty (time, latitude, longitude) float64 dask.array<chunksize=(1, 360, 720), meta=np.ndarray>
rgi_raster (band, y, x) float64 19.0 19.0 19.0 19.0 ... 10.0 10.0 10.0
如果知道坐标相同,可以直接构造一个DataArray并将其添加到Dataset中:
ds['rgi_raster'] = xr.DataArray(rgi_raster, dims=('band', 'latitude', 'longitude'))
注意:您的示例栅格的第一个维度的形状为 1。这不能是时间,但可以是其他内容(例如波段)。