在为我的数据集运行k-means后,k = 4,然后进行线性回归,然后打印了预测的Y。现在,我想找到预测的准确性。在使用[>]尝试sklearn之后
df1 = regressor.predict(X_test)
print('Predicted Y', df1)
df2 = (y_test)
print('Actual Y', df2)
from sklearn import metrics
results = metrics.accuracy_score(df1, df2)
print(results)
我会得到错误
ValueError: Classification metrics can't handle a mix of continuous-multioutput and multiclass-multioutput targets
还有其他方法可以进行此准确性测试吗?我正在寻找的是每个预测的准确性,然后是所有预测的平均值。我的预测Y是
[46.65347546 49.52538101 50.71174784 47.95042085 53.36249628 48.50331361
49.20114466 55.90266617]
我的实际Y是[60,51,54,61,51,50,55,59]
。我的预期结果是这样的:精度= [23%, 3.9%, 7,4%, 22.9%, 3,7%, 4%, 10,9%, 6,7%]
在为我的数据集运行k-means后,k = 4,然后进行线性回归,然后打印了预测的Y。现在,我想找到预测的准确性。使用df1 =尝试使用sklearn后,...>
您可以使用类似这样的内容:
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = regressor, X = X_train, y = y_train, cv = 10)
true_accuracy = accuracies.mean()