我正在尝试构建非常简单的 DAG,就像 POC 一样,它从 Trino 表中读取一些愚蠢的内容。 这是我的 docker-compose 文件,取自 Airflow 文档 + 我为 Trino 添加的内容:
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.8.1}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'false'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session'
# yamllint disable rule:line-length
# Use simple http server on scheduler for health checks
# See https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/logging-monitoring/check-health.html#scheduler-health-check-server
# yamllint enable rule:line-length
AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true'
# WARNING: Use _PIP_ADDITIONAL_REQUIREMENTS option ONLY for a quick checks
# for other purpose (development, test and especially production usage) build/extend Airflow image.
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags
- ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs
- ${AIRFLOW_PROJ_DIR:-.}/config:/opt/airflow/config
- ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 10s
retries: 5
start_period: 5s
restart: always
redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 10s
timeout: 30s
retries: 50
start_period: 30s
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- "8080:8080"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8974/health"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
# yamllint disable rule:line-length
test:
- "CMD-SHELL"
- 'celery --app airflow.providers.celery.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}" || celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_MIGRATE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- ${AIRFLOW_PROJ_DIR:-.}:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- "5555:5555"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
trino:
image: trinodb/trino
environment:
- QUERY_MAX_MEMORY=1GB
ports:
- "8081:8080"
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8081/v1/status"]
interval: 30s
timeout: 10s
retries: 5
start_period: 30s
restart: always
depends_on:
- postgres
volumes:
postgres-db-volume:
服务似乎一切正常,我在 UI 中看到了其他 DAG。 不直接相关,但这是我想要运行的查询,并且它在 trino 容器内部工作:
SELECT COUNT(*) FROM tpch.sf1.nation
问题在于 DAG 的导入。 这是 DAG 的脚本:
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.providers.trino.transfers.sql_check import TrinoSQLValueCheckOperator
from airflow.operators.dummy_operator import DummyOperator
from airflow.providers.trino.operators.check import TrinoCheckOperator
default_args = {
'owner': 'airflow',
'start_date': datetime(2024, 2, 13),
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
dag = DAG(
'trino_example',
default_args=default_args,
description='A simple DAG to execute Trino queries',
schedule_interval=timedelta(days=1),
)
start_task = DummyOperator(task_id='start', dag=dag)
# Assume you have a Trino connection named 'trino_default' in your Airflow configuration
trino_conn_id = 'trino_default'
# Execute the SQL query and store the result in XCom
query_task = TrinoSQLValueCheckOperator(
task_id='execute_query',
sql="SELECT COUNT(*) FROM tpch.sf1.nation",
conn_id=trino_conn_id,
dag=dag,
)
# Print the result
def print_result(**kwargs):
ti = kwargs['ti']
result = ti.xcom_pull(task_ids='execute_query')
print(f"Query Result: {result}")
print_task = PythonOperator(
task_id='print_result',
python_callable=print_result,
provide_context=True,
dag=dag,
)
end_task = DummyOperator(task_id='end', dag=dag)
start_task >> query_task >> print_task >> end_task
这是我在用户界面中遇到的错误:
Broken DAG: [/opt/airflow/dags/example_trino_dag.py] Traceback (most recent call last):
File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
File "/opt/airflow/dags/example_trino_dag.py", line 4, in <module>
from airflow.providers.trino.transfers.sql_check import TrinoSQLValueCheckOperator
ModuleNotFoundError: No module named 'airflow.providers.trino.transfers.sql_check'
chatGPT 和副驾驶提出了诸如
之类的建议docker-compose exec airflow-webserver pip install apache-airflow-providers-trino
docker-compose exec airflow-scheduler pip install apache-airflow-providers-trino
docker-compose exec airflow-worker pip install apache-airflow-providers-trino
和
from airflow.providers.trino.transfers.sql_check import TrinoSQLValueCheckOperator
还有更多类似进口的东西,其中最奇怪的是:
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.dummy_operator import DummyOperator
try:
# Try importing the Trino operators with the new-style import
from airflow.providers.trino.transfers.sql_check import TrinoSQLValueCheckOperator
except ImportError:
# Fallback to the old-style import if the new-style is not available
from airflow.operators.trino_check_operator import TrinoCheckOperator as TrinoSQLValueCheckOperator
try:
# Try importing the Trino operators with the new-style import
from airflow.providers.trino.operators.check import TrinoCheckOperator
except ImportError:
# Fallback to the old-style import if the new-style is not available
from airflow.operators.trino_check_operator import TrinoCheckOperator
但是导入和缺少模块的错误仍然存在。
我最终想要的就是能够在 Trino 上运行最基本的查询,并将其保存到 xcom。仅供学习使用。
任何有助于理解我在这里缺少的内容的帮助。 我在这里找不到相关主题。
我也遇到过同样的问题。你解决了吗?