我导入了一个excel文件并且遇到了pandas
迭代问题。导入后数据如下所示。
Acct Time Typ Name
01/02/2018 NaN NaN NaN
52 07:58:34 1 John
53 07:58:35 1 Jack
54 07:58:35 1 Ron
55 07:58:35 1 Lux
01/03/2018 NaN NaN NaN
79 12:39:25 1 Mike
01/06/2018 NaN NaN NaN
371 12:15:47 1 Eric
422 17:07:33 1 Shawn
01/07/2018 NaN NaN NaN
492 12:43:54 1 George
我想迭代第一列("Acct"
)的字符串,检查它的日期或数字。
我在新数据框中创建了一个额外的列,并尝试使用日期字段填充,但得到的系列错误很少。
期待这样的输出:
Date_New Acct Time Typ Name
01/02/2018 52 07:58:34 1 John
01/02/2018 53 07:58:35 1 Jack
01/02/2018 54 07:58:35 1 Ron
01/02/2018 55 07:58:35 1 Lux
01/03/2018 79 12:39:25 1 Mike
01/06/2018 371 12:15:47 1 Eric
01/06/2018 422 17:07:33 1 Shawn
01/07/2018 492 12:43:54 1 George
如果有人能给我一些方向,我会很感激,因为我是pandas
的新手。
我建议不要迭代,而是使用pandas
函数。要查找正确的日期,您可以使用Acct
将pd.to_datetime
列转换为正确的日期,并使用参数errors = 'coerce'
。非约会将变为null(NaT
)。然后,使用ffill
向前填充具有适当日期的列,并通过索引删除其中Time
,Typ
和Name
列都是NaN
的列。最后,您可以重新排序列:
# Find proper dates, create new column:
df['Date_New'] = pd.to_datetime(df['Acct'], errors='coerce')
# Fill non-valid dates:
df['Date_New'].ffill(inplace=True)
# Get rid of `NaN` rows:
df = df[~df[['Time','Typ', 'Name']].isnull().all(1)]
# Reorder Columns
df = df[['Date_New', 'Acct', 'Time', 'Typ', 'Name']]
>>> df
Date_New Acct Time Typ Name
1 2018-01-02 52 07:58:34 1.0 John
2 2018-01-02 53 07:58:35 1.0 Jack
3 2018-01-02 54 07:58:35 1.0 Ron
4 2018-01-02 55 07:58:35 1.0 Lux
6 2018-01-03 79 12:39:25 1.0 Mike
8 2018-01-06 371 12:15:47 1.0 Eric
9 2018-01-06 422 17:07:33 1.0 Shawn
11 2018-01-07 492 12:43:54 1.0 George
进一步说明:
为了便于理解,以下是每个步骤后的结果:
>>> df['Date_New'] = pd.to_datetime(df['Acct'], errors='coerce')
>>> df
Acct Time Typ Name Date_New
0 01/02/2018 NaN NaN NaN 2018-01-02
1 52 07:58:34 1.0 John NaT
2 53 07:58:35 1.0 Jack NaT
3 54 07:58:35 1.0 Ron NaT
4 55 07:58:35 1.0 Lux NaT
5 01/03/2018 NaN NaN NaN 2018-01-03
6 79 12:39:25 1.0 Mike NaT
7 01/06/2018 NaN NaN NaN 2018-01-06
8 371 12:15:47 1.0 Eric NaT
9 422 17:07:33 1.0 Shawn NaT
10 01/07/2018 NaN NaN NaN 2018-01-07
11 492 12:43:54 1.0 George NaT
>>> df['Date_New'].ffill(inplace=True)
>>> df
Acct Time Typ Name Date_New
0 01/02/2018 NaN NaN NaN 2018-01-02
1 52 07:58:34 1.0 John 2018-01-02
2 53 07:58:35 1.0 Jack 2018-01-02
3 54 07:58:35 1.0 Ron 2018-01-02
4 55 07:58:35 1.0 Lux 2018-01-02
5 01/03/2018 NaN NaN NaN 2018-01-03
6 79 12:39:25 1.0 Mike 2018-01-03
7 01/06/2018 NaN NaN NaN 2018-01-06
8 371 12:15:47 1.0 Eric 2018-01-06
9 422 17:07:33 1.0 Shawn 2018-01-06
10 01/07/2018 NaN NaN NaN 2018-01-07
11 492 12:43:54 1.0 George 2018-01-07
>>> df = df[~df[['Time','Typ', 'Name']].isnull().all(1)]
>>> df
Acct Time Typ Name Date_New
1 52 07:58:34 1.0 John 2018-01-02
2 53 07:58:35 1.0 Jack 2018-01-02
3 54 07:58:35 1.0 Ron 2018-01-02
4 55 07:58:35 1.0 Lux 2018-01-02
6 79 12:39:25 1.0 Mike 2018-01-03
8 371 12:15:47 1.0 Eric 2018-01-06
9 422 17:07:33 1.0 Shawn 2018-01-06
11 492 12:43:54 1.0 George 2018-01-07