为什么我的混合效应逻辑回归模型输出非线性结果而不是线性log-odds? (r函数glmer和ggemeans)

问题描述 投票:0回答:1
LMM_acc = glmer(Correct ~ time_position.c + response_side + response_side*time_position.c + (1|ppt_id)+ (1|Stimulus), data = data_cleaned, family = binomial, nAGQ = 0)

the剧情:

ggemmeans(LMM_acc, terms = c("time_position.c","response_side")) %>% plot()+ geom_line (size = 2)+ aes(linetype = group_col) + theme(legend.title = element_text(size=30), legend.position = 'top', legend.key.size = unit('1.5', 'cm'), axis.title.y = element_text(size = rel(2), angle = 90), axis.title.x = element_text(size = rel(2)), axis.text.x = element_text(size=20), axis.text.y = element_text(size=20))+ ylim(0.47, 1.00) + scale_colour_manual("response_side", values = c("purple","orangered")) + scale_fill_manual("response_side", values = c("purple","orangered"), guide = "legend") + scale_linetype_manual("response_side", values = c(2,1)) + guides(fill = guide_legend(override.aes = list(fill = c("purple","orangered"))))

这是输出,应该是线性的,但不是:

也许这个问题不是在模型上,而是绘图方法?因为当我使用另一个函数绘制整个模型时(Aretffects)似乎是线性的:

enter image description here

任何见解将不胜感激!

enter image description here

@pbulls谢谢您的答复。如您所建议,我更改了Ggemmeans代码。但是,结果仍然不是线性的。 Y尺度显示百分比,而不是日志赔率。知道我如何解决这个问题?

ggemmeans(LMM_acc, terms = c("time_position.c", "response_side"), back.transform = FALSE) %>% plot() + geom_line(size = 2) + aes(linetype = group_col) + theme(legend.title = element_text(size = 30), legend.position = 'top', legend.key.size = unit('1.5', 'cm'), axis.title.y = element_text(size = rel(2), angle = 90), axis.title.x = element_text(size = rel(2)), axis.text.x = element_text(size = 20), axis.text.y = element_text(size = 20)) + scale_colour_manual("response_side", values = c("purple","orangered")) + scale_fill_manual("response_side", values = c("purple","orangered"), guide = "legend") + scale_linetype_manual("response_side", values = c(2,1)) + guides(fill = guide_legend(override.aes = list(fill = c("purple","orangered"))))
r ggplot2 lme4
1个回答
0
投票
最新问题
© www.soinside.com 2019 - 2025. All rights reserved.