LMM_acc = glmer(Correct ~
time_position.c +
response_side +
response_side*time_position.c +
(1|ppt_id)+
(1|Stimulus),
data = data_cleaned,
family = binomial,
nAGQ = 0)
the剧情:
ggemmeans(LMM_acc, terms = c("time_position.c","response_side")) %>%
plot()+
geom_line (size = 2)+
aes(linetype = group_col) +
theme(legend.title = element_text(size=30),
legend.position = 'top',
legend.key.size = unit('1.5', 'cm'),
axis.title.y = element_text(size = rel(2), angle = 90),
axis.title.x = element_text(size = rel(2)),
axis.text.x = element_text(size=20),
axis.text.y = element_text(size=20))+
ylim(0.47, 1.00) +
scale_colour_manual("response_side", values = c("purple","orangered")) +
scale_fill_manual("response_side", values = c("purple","orangered"),
guide = "legend") +
scale_linetype_manual("response_side", values = c(2,1)) +
guides(fill = guide_legend(override.aes =
list(fill = c("purple","orangered"))))
这是输出,应该是线性的,但不是:
也许这个问题不是在模型上,而是绘图方法?因为当我使用另一个函数绘制整个模型时(Aretffects)似乎是线性的:
任何见解将不胜感激!@pbulls谢谢您的答复。如您所建议,我更改了Ggemmeans代码。但是,结果仍然不是线性的。 Y尺度显示百分比,而不是日志赔率。知道我如何解决这个问题?
ggemmeans(LMM_acc, terms = c("time_position.c", "response_side"), back.transform = FALSE) %>%
plot() +
geom_line(size = 2) +
aes(linetype = group_col) +
theme(legend.title = element_text(size = 30),
legend.position = 'top',
legend.key.size = unit('1.5', 'cm'),
axis.title.y = element_text(size = rel(2), angle = 90),
axis.title.x = element_text(size = rel(2)),
axis.text.x = element_text(size = 20),
axis.text.y = element_text(size = 20)) +
scale_colour_manual("response_side", values = c("purple","orangered")) +
scale_fill_manual("response_side", values = c("purple","orangered"),
guide = "legend") +
scale_linetype_manual("response_side", values = c(2,1)) +
guides(fill = guide_legend(override.aes =
list(fill = c("purple","orangered"))))