为什么设置 F_SEAL_WRITE 后无法创建只读、共享映射?

问题描述 投票:0回答:2

执行

fcntl(memfd, F_ADD_SEALS, F_SEAL_WRITE);
后,诸如
mmap(NULL, 4096, PROT_READ, MAP_SHARED, memfd, 0);
之类的调用会失败并出现错误
EPERM
。基于
man 2 fcntl
,我对
F_SEAL_WRITE
的理解是它只阻止可写的、共享的映射。同样,如果我在有这样一个只读内存映射的情况下执行 fcntl,它会失败并出现错误
EBUSY
,就像我只期望映射可写时才会出现的情况一样。为什么会出现这种情况?

MCVE:

#include <unistd.h>
#include <fcntl.h>
#include <sys/syscall.h>
#include <sys/mman.h>

int main(void) {
    void *buf;
    int memfd = syscall(SYS_memfd_create, "foo", 2 /* MFD_ALLOW_SEALING */);
    ftruncate(memfd, 4096);
    buf = mmap(NULL, 4096, PROT_READ, MAP_SHARED, memfd, 0);
    fcntl(memfd, 1033 /* F_ADD_SEALS */, 8 /* F_SEAL_WRITE */); // will fail
    munmap(buf, 4096);
    fcntl(memfd, 1033 /* F_ADD_SEALS */, 8 /* F_SEAL_WRITE */);
    buf = mmap(NULL, 4096, PROT_READ, MAP_SHARED, memfd, 0); // will fail
    return 0;
}

当在

strace
(在 Ubuntu 16.04 的 Linux 4.4.0-135-generic 上)下运行时,它会生成以下内容:

memfd_create("foo", MFD_ALLOW_SEALING)  = 3
ftruncate(3, 4096)                      = 0
mmap(NULL, 4096, PROT_READ, MAP_SHARED, 3, 0) = 0x7fd9a9865000
fcntl(3, F_ADD_SEALS, F_SEAL_WRITE)     = -1 EBUSY (Device or resource busy)
munmap(0x7fd9a9865000, 4096)            = 0
fcntl(3, F_ADD_SEALS, F_SEAL_WRITE)     = 0
mmap(NULL, 4096, PROT_READ, MAP_SHARED, 3, 0) = -1 EPERM (Operation not permitted)
c linux system-calls mmap fcntl
2个回答
1
投票

来自

man 2 fcntl

如果存在任何可写的共享映射,则使用

F_ADD_SEALS
操作设置
F_SEAL_WRITE
密封将失败并显示
EBUSY

您的

mmap
似乎没有创建可写映射,因此这不应该适用。手册页可能有错误。

但是,低于实际的内核代码[顶层]。以下大部分内容来自

mm/memfd.c

您可以从

 EBUSY
mapping_deny_writable
获得
memfd_wait_for_pins

我最好的猜测是,要么

mmap
增加了计数,所以
mapping_deny_writable
失败,要么
ftruncate
有一些固定事物的映射。

从后者看来,[一段时间后]固定可以得到缓解,因此在

EBUSY
错误上旋转几次可能会有所帮助。


static int memfd_add_seals(struct file *file, unsigned int seals)
{
    struct inode *inode = file_inode(file);
    unsigned int *file_seals;
    int error;

    /*
     * SEALING
     * Sealing allows multiple parties to share a tmpfs or hugetlbfs file
     * but restrict access to a specific subset of file operations. Seals
     * can only be added, but never removed. This way, mutually untrusted
     * parties can share common memory regions with a well-defined policy.
     * A malicious peer can thus never perform unwanted operations on a
     * shared object.
     *
     * Seals are only supported on special tmpfs or hugetlbfs files and
     * always affect the whole underlying inode. Once a seal is set, it
     * may prevent some kinds of access to the file. Currently, the
     * following seals are defined:
     *   SEAL_SEAL: Prevent further seals from being set on this file
     *   SEAL_SHRINK: Prevent the file from shrinking
     *   SEAL_GROW: Prevent the file from growing
     *   SEAL_WRITE: Prevent write access to the file
     *
     * As we don't require any trust relationship between two parties, we
     * must prevent seals from being removed. Therefore, sealing a file
     * only adds a given set of seals to the file, it never touches
     * existing seals. Furthermore, the "setting seals"-operation can be
     * sealed itself, which basically prevents any further seal from being
     * added.
     *
     * Semantics of sealing are only defined on volatile files. Only
     * anonymous tmpfs and hugetlbfs files support sealing. More
     * importantly, seals are never written to disk. Therefore, there's
     * no plan to support it on other file types.
     */

    if (!(file->f_mode & FMODE_WRITE))
        return -EPERM;
    if (seals & ~(unsigned int)F_ALL_SEALS)
        return -EINVAL;

    inode_lock(inode);

    file_seals = memfd_file_seals_ptr(file);
    if (!file_seals) {
        error = -EINVAL;
        goto unlock;
    }

    if (*file_seals & F_SEAL_SEAL) {
        error = -EPERM;
        goto unlock;
    }

    if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
        error = mapping_deny_writable(file->f_mapping);
        if (error)
            goto unlock;

        error = memfd_wait_for_pins(file->f_mapping);
        if (error) {
            mapping_allow_writable(file->f_mapping);
            goto unlock;
        }
    }

    *file_seals |= seals;
    error = 0;

unlock:
    inode_unlock(inode);
    return error;
}

这是

mapping_deny_writable

static inline int mapping_deny_writable(struct address_space *mapping)
{
    return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
        0 : -EBUSY;
}

这是

memfd_wait_for_pins

/*
 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
 * via get_user_pages(), drivers might have some pending I/O without any active
 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
 * and see whether it has an elevated ref-count. If so, we tag them and wait for
 * them to be dropped.
 * The caller must guarantee that no new user will acquire writable references
 * to those pages to avoid races.
 */
static int memfd_wait_for_pins(struct address_space *mapping)
{
    struct radix_tree_iter iter;
    void __rcu **slot;
    pgoff_t start;
    struct page *page;
    int error, scan;

    memfd_tag_pins(mapping);

    error = 0;
    for (scan = 0; scan <= LAST_SCAN; scan++) {
        if (!radix_tree_tagged(&mapping->i_pages, MEMFD_TAG_PINNED))
            break;

        if (!scan)
            lru_add_drain_all();
        else if (schedule_timeout_killable((HZ << scan) / 200))
            scan = LAST_SCAN;

        start = 0;
        rcu_read_lock();
        radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter,
                       start, MEMFD_TAG_PINNED) {

            page = radix_tree_deref_slot(slot);
            if (radix_tree_exception(page)) {
                if (radix_tree_deref_retry(page)) {
                    slot = radix_tree_iter_retry(&iter);
                    continue;
                }

                page = NULL;
            }

            if (page &&
                page_count(page) - page_mapcount(page) != 1) {
                if (scan < LAST_SCAN)
                    goto continue_resched;

                /*
                 * On the last scan, we clean up all those tags
                 * we inserted; but make a note that we still
                 * found pages pinned.
                 */
                error = -EBUSY;
            }

            xa_lock_irq(&mapping->i_pages);
            radix_tree_tag_clear(&mapping->i_pages,
                         iter.index, MEMFD_TAG_PINNED);
            xa_unlock_irq(&mapping->i_pages);
continue_resched:
            if (need_resched()) {
                slot = radix_tree_iter_resume(slot, &iter);
                cond_resched_rcu();
            }
        }
        rcu_read_unlock();
    }

    return error;
}

© www.soinside.com 2019 - 2024. All rights reserved.