传输我自己的数据集中的学习见解表 我当前使用glint360k_cosface_r100_fp16_0.1模型从Arcface Torch部分开始使用Insightface进行转移学习。但是,我面临过度拟合或

问题描述 投票:0回答:0
为了解决这个问题,我首先执行了数据增强,然后应用了相同的80/20拆分。但是,这导致过度拟合,因为我怀疑该模型是通过记住增强图像而不是概括的模式来“作弊”的。

由于我是这个领域的新手,我真的很感谢您在方法或代码中可能犯的错误的详细反馈。预先感谢!
    below是代表我的方法的伪代码:
  1. BEGIN # ---- SETUP ENVIRONMENT ---- SET CUDA and OpenCV paths SET PyTorch memory allocation config # ---- IMPORT LIBRARIES ---- IMPORT required libraries (Torch, NumPy, OpenCV, InsightFace, etc.) # ---- DEFINE FaceDataset CLASS ---- CLASS FaceDataset: INITIALIZE dataset directory, transformations, and cache IF cache exists: LOAD dataset from cache ELSE: INITIALIZE face detection model (InsightFace) SCAN dataset directory FOR each image folder: FOR each image: DETECT face IF face detected: CROP and RESIZE to (112,112) STORE in dataset SAVE dataset to cache FUNCTION _detect_face(image): READ image CONVERT to RGB DETECT faces using InsightFace IF face detected: CROP, RESIZE, RETURN face ELSE: RETURN None FUNCTION __getitem__(index): RETURN image and label FUNCTION __len__(): RETURN number of samples # ---- DEFINE FaceRecognitionModel CLASS ---- CLASS FaceRecognitionModel: INITIALIZE ResNet50 backbone FREEZE lower layers, fine-tune upper layers ADD fully connected classifier with dropout FUNCTION forward(input): PASS through backbone PASS through classifier head RETURN output # ---- DEFINE TRAINING FUNCTION ---- FUNCTION train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs): INITIALIZE metrics storage SET early stopping threshold FOR epoch in range(num_epochs): IF warm-up phase: ADJUST learning rate # ---- TRAIN PHASE ---- SET model to training mode FOR batch in train_loader: LOAD input images and labels COMPUTE predictions CALCULATE loss BACKPROPAGATE and update weights # ---- VALIDATION PHASE ---- SET model to evaluation mode FOR batch in val_loader: COMPUTE predictions CALCULATE validation loss UPDATE scheduler with validation loss CHECK for early stopping condition RETURN best model # ---- DEFINE VALIDATION ---- FUNCTION split_data(): EXTRACT person identity from filenames PERFORM GroupShuffleSplit to avoid identity leakage RETURN train and validation indices # ---- DEFINE DATA AUGMENTATION ---- FUNCTION get_transforms(): RETURN image augmentation pipeline (flip, resize, normalize) # ---- DEFINE ONNX EXPORT FUNCTION ---- FUNCTION export_to_onnx(model, save_path): CONVERT PyTorch model to ONNX format VERIFY conversion RETURN ONNX model # ---- MAIN FUNCTION ---- FUNCTION main(): SET dataset path, cache directory, and logging path INITIALIZE dataset with caching enabled SPLIT dataset ensuring unique individuals in train and validation APPLY data augmentation CREATE data loaders for training and validation # ---- MODEL INITIALIZATION ---- LOAD ResNet50 backbone INITIALIZE FaceRecognitionModel SET loss function, optimizer, and scheduler # ---- TRAIN THE MODEL ---- CALL train_model() # ---- EXPORT TRAINED MODEL ---- CALL export_to_onnx() PRINT "Training Complete!" # ---- RUN MAIN FUNCTION ---- IF __name__ == "__main__": CALL main() END
  2. Insightface已经拥有一种使用大型数据集训练的模型,该数据集考虑了许多种族,角度,面部形状等。您构建的数据非常小,因此,除非您的目标过度拟合,否则很难比现有的Insightface模型更好地实现一般性能。
  3. 对于Insightface之类的模型,最好专注于“如何使用”这些模型。如果您想创建专门针对特定数据集域的面部识别模型,则参考其他面部识别模型并训练它们将很有帮助。

pytorch face-recognition transfer-learning fine-tuning insightface
最新问题
© www.soinside.com 2019 - 2025. All rights reserved.