由于我是这个领域的新手,我真的很感谢您在方法或代码中可能犯的错误的详细反馈。预先感谢!
BEGIN
# ---- SETUP ENVIRONMENT ----
SET CUDA and OpenCV paths
SET PyTorch memory allocation config
# ---- IMPORT LIBRARIES ----
IMPORT required libraries (Torch, NumPy, OpenCV, InsightFace, etc.)
# ---- DEFINE FaceDataset CLASS ----
CLASS FaceDataset:
INITIALIZE dataset directory, transformations, and cache
IF cache exists:
LOAD dataset from cache
ELSE:
INITIALIZE face detection model (InsightFace)
SCAN dataset directory
FOR each image folder:
FOR each image:
DETECT face
IF face detected:
CROP and RESIZE to (112,112)
STORE in dataset
SAVE dataset to cache
FUNCTION _detect_face(image):
READ image
CONVERT to RGB
DETECT faces using InsightFace
IF face detected:
CROP, RESIZE, RETURN face
ELSE:
RETURN None
FUNCTION __getitem__(index):
RETURN image and label
FUNCTION __len__():
RETURN number of samples
# ---- DEFINE FaceRecognitionModel CLASS ----
CLASS FaceRecognitionModel:
INITIALIZE ResNet50 backbone
FREEZE lower layers, fine-tune upper layers
ADD fully connected classifier with dropout
FUNCTION forward(input):
PASS through backbone
PASS through classifier head
RETURN output
# ---- DEFINE TRAINING FUNCTION ----
FUNCTION train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs):
INITIALIZE metrics storage
SET early stopping threshold
FOR epoch in range(num_epochs):
IF warm-up phase:
ADJUST learning rate
# ---- TRAIN PHASE ----
SET model to training mode
FOR batch in train_loader:
LOAD input images and labels
COMPUTE predictions
CALCULATE loss
BACKPROPAGATE and update weights
# ---- VALIDATION PHASE ----
SET model to evaluation mode
FOR batch in val_loader:
COMPUTE predictions
CALCULATE validation loss
UPDATE scheduler with validation loss
CHECK for early stopping condition
RETURN best model
# ---- DEFINE VALIDATION ----
FUNCTION split_data():
EXTRACT person identity from filenames
PERFORM GroupShuffleSplit to avoid identity leakage
RETURN train and validation indices
# ---- DEFINE DATA AUGMENTATION ----
FUNCTION get_transforms():
RETURN image augmentation pipeline (flip, resize, normalize)
# ---- DEFINE ONNX EXPORT FUNCTION ----
FUNCTION export_to_onnx(model, save_path):
CONVERT PyTorch model to ONNX format
VERIFY conversion
RETURN ONNX model
# ---- MAIN FUNCTION ----
FUNCTION main():
SET dataset path, cache directory, and logging path
INITIALIZE dataset with caching enabled
SPLIT dataset ensuring unique individuals in train and validation
APPLY data augmentation
CREATE data loaders for training and validation
# ---- MODEL INITIALIZATION ----
LOAD ResNet50 backbone
INITIALIZE FaceRecognitionModel
SET loss function, optimizer, and scheduler
# ---- TRAIN THE MODEL ----
CALL train_model()
# ---- EXPORT TRAINED MODEL ----
CALL export_to_onnx()
PRINT "Training Complete!"
# ---- RUN MAIN FUNCTION ----
IF __name__ == "__main__":
CALL main()
END