TensorFlow:ValueError:不支持任何值

问题描述 投票:0回答:1
import tensorflow as tf
import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

mnist=input_data.read_data_sets('MNIST_DATA/',one_hot=True)
def init_weights(shape):
    init_random_dist=tf.truncated_normal(shape,stddev=0.1)

    return tf.Variable(init_random_dist)
def init_bias(shape):
    init_bias_vals=tf.constant(0.1,shape=shape)
    return tf.Variable(init_bias_vals)
def conv2d(x,W):

    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_2by2(x):
    tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
def conv(input_x,shape):
    W=init_weights(shape)
    b=init_bias([shape[3]])
    return tf.nn.relu(conv2d(input_x,W)+b )
def normal(input_layer,size):
    input_size=int(input_layer.get_shape()[1])
    W=init_weights([input_size,size])
    b=init_bias([size])
    return tf.matmul(input_layer,W)+b
x=tf.placeholder(tf.float32,shape=[None,784])
y_true=tf.placeholder(tf.float32,shape=[None,10])
x_image=tf.reshape(x,[-1,28,28,1])

 conv1=conv(x_image,shape=[5,5,1,32])
 conv1_pooling=max_pool_2by2(conv1)
# # conv2=conv(conv1_pooling,shape=[5,5,32,64])
 conv2=conv(conv1_pooling,shape=[5,5,32,64])
 conv2_pooling=max_pool_2by2(conv2)
 conv2_flat=tf.reshape(conv2_pooling,[-1,7*7*64])
 full_layer=tf.nn.relu(normal(conv2_flat,1024))

但是当我试图运行这段代码时,我遇到了一个奇怪的错误

ValueError: None values not supported.

During handling of the above exception, another exception occurred:

所有这些代码都是从教程中学习但当我试图运行该教程的jupyter笔记本时代码执行良好并且执行后没有问题或错误我不知道我的代码弹出错误的原因

任何形式的帮助是赞赏EDIT1:我没有在讲道后面的tensorflow会话中运行此代码,导师告诉他们运行此代码以检查任何类型的问题

python tensorflow neural-network deep-learning
1个回答
0
投票

好吧,问题是你忘记了max_pool_2by2的回归,即它应该是:

def max_pool_2by2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

所以完整的代码应该是:

import tensorflow as tf
import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

mnist=input_data.read_data_sets('MNIST_DATA/',one_hot=True)
def init_weights(shape):
    init_random_dist=tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(init_random_dist)

def init_bias(shape):
    init_bias_vals=tf.constant(0.1,shape=shape)
    return tf.Variable(init_bias_vals)

def conv2d(x,W, name):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME',name=name)

def max_pool_2by2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

def convolutional_layer(input_x,shape,name):
    W=init_weights(shape)
    b=init_bias([shape[3]])
    return tf.nn.relu(conv2d(input_x,W, name)+b )

def normal(input_layer,size):
    input_size=int(input_layer.get_shape()[1])
    W=init_weights([input_size,size])
    b=init_bias([size])
    return tf.matmul(input_layer,W)+b

x=tf.placeholder(tf.float32,shape=[None,784], name='x')
y_true=tf.placeholder(tf.float32,shape=[None,10], name='y_true')
x_image=tf.reshape(x,[1,28,28,1])
conv1=convolutional_layer(x_image,shape=[5,5,1,32],name='conv1')
print(conv1.get_shape())
conv1_pooling=max_pool_2by2(conv1)
print(conv1_pooling.get_shape())
conv2=convolutional_layer(conv1_pooling,shape=[5,5,32,64], name='conv2')
conv2_pooling=max_pool_2by2(conv2)
conv2_flat=tf.reshape(conv2_pooling,[-1,7*7*64])
full_layer=tf.nn.relu(normal(conv2_flat,1024))
© www.soinside.com 2019 - 2024. All rights reserved.