我正在处理大量日志文件,我想将作业转移到 Spark,但我不知道如何像在 Pandas 中那样轻松地在基于事件的时间窗口上聚合事件。
这正是我想做的:
对于经历过某些事件的用户的日志文件(如下模拟),我想回溯到过去 7 天,并返回所有其他列的聚合。
这是在 Pandas 中。有什么想法如何将其移植到 PySpark 吗?
import pandas as pd
df = pd.DataFrame({'user_id':[1,1,1,2,2,2], 'event':[0,1,0,0,0,1], 'other':[12, 20, 16, 84, 11, 15] , 'event_date':['2015-01-01 00:02:43', '2015-01-04 00:02:03', '2015-01-10 00:12:26', '2015-01-01 00:02:43', '2015-01-06 00:02:43', '2015-01-012 18:10:09']})
df['event_date'] = pd.to_datetime(df['event_date'])
df
给予:
event event_date other user_id
0 0 2015-01-01 00:02:43 12 1
1 1 2015-01-04 00:02:03 20 1
2 0 2015-01-10 00:12:26 16 1
3 0 2015-01-01 00:02:43 84 2
4 0 2015-01-06 00:02:43 11 2
5 1 2015-01-12 18:10:09 15 2
我想按 user_id 对此 DataFrame 进行分组,然后从聚合中排除任何行,其中该行距“事件”已超过 7 天。
在 Pandas 中,就像这样:
def f(x):
# Find event
win = x.event == 1
# Get the date when event === 1
event_date = list(x[win]['event_date'])[0]
# Construct the window
min_date = event_date - pd.DateOffset(days=7)
# Set x to this specific date window
x = x[(x.event_date > min_date) & (x.event_date <= event_date)]
# Aggregate other
x['other'] = x.other.sum()
return x[win] #, x[z]])
df.groupby(by='user_id').apply(f).reset_index(drop=True)
给出所需的输出(每个用户一行,其中 event_date 对应于 event==1):
event event_date other user_id
0 1 2015-01-04 00:02:03 32 1
1 1 2015-01-12 18:10:09 26 2
有人知道从哪里开始在 Spark 中获得这个结果吗?
相当 SQLish,但你可以这样做:
from pyspark.sql.functions import sum, col, udf
from pyspark.sql.types import BooleanType
# With raw SQL you can use datediff but it looks like it is not
# available as a function yet
def less_than_n_days(n):
return udf(lambda dt1, dt2: 0 <= (dt1 - dt2).days < n, BooleanType())
# Select only events
events = df.where(df.event == 1).select(
df.event_date.alias("evd"), df.user_id.alias("uid"))
(events
.join(df, (events.uid == df.user_id) & (events.evd >= df.event_date))
.where(less_than_n_days(7)(col("evd"), col("event_date")))
.groupBy("evd", "user_id")
.agg(sum("other").alias("other"))
.withColumnRenamed("evd", "event_date"))
不幸的是,我们不能在
less_than_n_days
子句中包含 join
,因为 udf
只能访问单个表中的列。由于它不适用于内置 datediff
,您可能更喜欢这样的原始 SQL:
df.registerTempTable("df")
events.registerTempTable("events")
sqlContext.sql("""
SELECT evd AS event_date, user_id, SUM(other) AS other
FROM df JOIN events ON
df.user_id = events.uid AND
datediff(evd, event_date) BETWEEN 0 AND 6
GROUP by evd, user_id""")
使用
rangeBetween()
函数的类似版本
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, max, sum, when, datediff
# Create a SparkSession
spark = SparkSession.builder.appName("Log Aggregation").getOrCreate()
# Read the DataFrame (replace with your actual data source)
df = spark.read.format("csv").option("header", "true").load("your_log_file.csv")
# Convert event_date to timestamp
df = df.withColumn("event_date", to_timestamp(col("event_date")))
# Identify event rows
df = df.withColumn("is_event", when(col("event") == 1, 1).otherwise(0))
# Calculate the latest event timestamp for each user
window_spec = Window.partitionBy("user_id").orderBy(col("event_date").desc())
df = df.withColumn("latest_event_date", max("event_date").over(window_spec))
# Create a time window of 7 days
window_spec = Window.partitionBy("user_id").orderBy(col("event_date")).rangeBetween(-7*24*60*60, 0)
# Aggregate data within the window
df = df.withColumn("other_sum", sum("other").over(window_spec))
df = df.filter(col("is_event") == 1)
# Select the desired columns
df = df.select("user_id", "event_date", "other_sum")
# Show the results
df.show()