我发现 PyTorch 中使用 GPU 实现 k 均值比 CPU 快 30 倍。是否有任何方法(例如 Silhouette 分数、Dunn 指数等)最好在使用 GPU 的 PyTorch 中实现?
我根据 Alexandre Abraham 的 numpy 实现在 PyTorch 中实现了轮廓分数 (https://gist.github.com/AlexandreAbraham/5544803):
https://github.com/maxschelski/pytorch-cluster-metrics
安装软件包后,您可以按如下方式计算轮廓分数:
from torchclustermetrics import silhouette
score = silhouette.score(X, labels)
X 是多维数据(NumPy 数组或 PyTorch 张量;样本的第一维),标签是每个样本的一维标签数组。
我在 PyTorch = 1.10.1 (cuda11.3_cudnn8_0) 上测试了代码。
在我的手中,与 scikit-learn 实现相比,它在 GPU 上的速度提高了大约 30 倍。
环顾四周后,不想安装任何额外的软件包。我写了这个简短、优化且简单的实现。希望有帮助!
def silhouette_scores(X: Tensor, labels: Tensor) -> Tensor:
"""Silhouette score implemented in PyTorch for GPU acceleration
.. seealso::
`Wikipedia's entry on Silhouette score <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_
Parameters
----------
X : Tensor
Data points of shape (n_samples, n_features)
labels : Tensor
Predicted label for each sample, shape (n_samples)
Returns
-------
Tensor
Silhouette score for each sample, shape (n_samples). Same device and dtype as X
"""
unique_labels = torch.unique(labels)
intra_dist = torch.zeros(labels.size(), dtype=X.dtype, device=X.device)
for label in unique_labels:
where = torch.where(labels == label)[0]
distances = torch.cdist(X[where], X[where])
intra_dist[where] = distances.sum(dim=1) / (distances.shape[0] - 1)
inter_dist = torch.full(labels.size(), torch.inf, dtype=X.dtype, device=X.device)
for label_a, label_b in torch.combinations(unique_labels, 2):
where_a = torch.where(labels == label_a)[0]
where_b = torch.where(labels == label_b)[0]
dist = torch.cdist(X[where_a], X[where_b])
dist_a = dist.mean(dim=1)
dist_b = dist.mean(dim=0)
inter_dist[where_a] = torch.minimum(dist_a, inter_dist[where_a])
inter_dist[where_b] = torch.minimum(dist_b, inter_dist[where_b])
sil_samples = (inter_dist - intra_dist) / torch.maximum(intra_dist, inter_dist)
return sil_samples.nan_to_num()