我正在使用下面提供的代码在 pycharm 中将 csv 转换为 tfrecord,但我无法获取 tfrecord 文件。我收到这条消息:
“tensorflow.python.framework.errors_impl.NotFoundError: 无法创建 NewWriteableFile: : 系统找不到指定的文件。 ;没有这样的文件或目录”
感谢您的帮助。
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import sys
import pandas as pd
import tensorflow as tf
import protos
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
from numpy import split
flagsMJ = tf.compat.v1.flags
flagsMJ.DEFINE_string('csv_input', '', 'C:/Users/Documents/Model A/MTrain_labels.csv')
flagsMJ.DEFINE_string('output_path', '',' C:/Users/Documents/Model A/Train.record')
flagsMJ.DEFINE_string('image_dir', '', 'C:/Users/Documents/Model A/Base')
FLAGS = flagsMJ.FLAGS
def class_text_to_int(row_label):
if row_label == "MM":
return 1
elif row_label == "JJ":
return 2
else:
row_label = None
def slip(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(),
gb.groups)]
def create_tf_example(group, path):
with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as
fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.compat.v1.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(FLAGS.image_dir)
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
tf.compat.v1.app.run()
错误
tensorflow.python.framework.errors_impl.NotFoundError
表示找不到指定的文件或目录。检查这些:
路径字符串:您已经定义了标志,但也提供了默认路径作为字符串参数。从字符串参数中删除路径。
flagsMJ.DEFINE_string('csv_input', '', 'Path to CSV')
而不是
flagsMJ.DEFINE_string('csv_input', '', 'C:/Users/Documents/Model A/MTrain_labels.csv')
目录存在:验证目录
'C:/Users/Documents/Model A/'
和'C:/Users/Documents/Model A/Base'
确实存在。
文件存在:确认指定目录中存在
MTrain_labels.csv
。
以管理员身份运行:有时,写入权限可能是一个问题。尝试以管理员身份运行 PyCharm。
标志用法:要设置标志,请像这样运行脚本:
python your_script.py --csv_input="C:/path/to/csv" --output_path="C:/path/to/output" --image_dir="C:/path/to/images"
缩进:您的代码的缩进似乎已关闭。确保其一致以避免 Python 错误。
解决这些问题,你就可以开始了。