我写了以下代码来实现KNN。
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(x,y)
classifier.score(x,y)
y_predict_classifier=classifier.predict(x_test)
问题是,当我试图使用准确度分数来计算准确度时,它给了我以下错误。
ValueError Traceback (most recent call last)
<ipython-input-128-358130e4f0a2> in <module>
----> 1 print("Accuracy:",metrics.accuracy_score(y_test, y_predict_classifier))
~\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py in accuracy_score(y_true, y_pred, normalize, sample_weight)
183
184 # Compute accuracy for each possible representation
--> 185 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
186 check_consistent_length(y_true, y_pred, sample_weight)
187 if y_type.startswith('multilabel'):
~\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py in _check_targets(y_true, y_pred)
78 y_pred : array or indicator matrix
79 """
---> 80 check_consistent_length(y_true, y_pred)
81 type_true = type_of_target(y_true)
82 type_pred = type_of_target(y_pred)
~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_consistent_length(*arrays)
210 if len(uniques) > 1:
211 raise ValueError("Found input variables with inconsistent numbers of"
--> 212 " samples: %r" % [int(l) for l in lengths])
213
214
ValueError: Found input variables with inconsistent numbers of samples: [176701, 1]
我打印了y和y_predict_classifier的形状,我得到的结果分别是(176701,)和(1,)。
谁能告诉我如何解决这个错误?
这个怎么样?
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
# Assign colum names to the dataset
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'Class']
# Read dataset to pandas dataframe
dataset = pd.read_csv(url, names=names)
dataset.head()
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
结果:
precision recall f1-score support
Iris-setosa 1.00 1.00 1.00 13
Iris-versicolor 1.00 0.89 0.94 9
Iris-virginica 0.89 1.00 0.94 8
accuracy 0.97 30
macro avg 0.96 0.96 0.96 30
weighted avg 0.97 0.97 0.97 30
继续...
error = []
# Calculating error for K values between 1 and 40
for i in range(1, 40):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train, y_train)
pred_i = knn.predict(X_test)
error.append(np.mean(pred_i != y_test))
plt.figure(figsize=(12, 6))
plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=10)
plt.title('Error Rate K Value')
plt.xlabel('K Value')
plt.ylabel('Mean Error')