scipy.minimize
在每次迭代的基础上访问成本函数,而不使用回调并重新执行成本函数?
options.disp
似乎是为了这样做,但只会导致优化器打印终止消息。
将其打印到标准输出并使用
contextlib.redirect_stdout
和 io.StringIO
来收集它并在之后解析数据就可以了,但我找不到一种方法来有效地访问每次迭代的成本函数。
least_squares
使用参数 verbose=2
来实现这一点。然而,它不是通用的最小化器,其目的是最小化给定函数的平方和。示例:
least_squares(lambda x: [x[0]*x[1]-6, x[0]+x[1]-5], [0, 0], verbose=2)
对于其他方法,如
minimize
,没有这样的选项。您可能希望向函数本身添加一些日志记录,而不是使用回调并重新评估成本函数。例如,这里 fun
将计算值附加到全局变量 cost_values
:
def fun(x):
c = x[0]**2 - 2*x[0] + x[1]**4
cost_values.append(c)
return c
cost_values = []
minimize(fun, [3, 2])
print(cost_values)
在此示例中,每个迭代步骤有 4 个相似的函数值,因为最小化算法环顾四周,计算近似的雅可比矩阵和/或海森矩阵。因此,
print(cost_values[::4])
将是获得每一步成本函数一个值的方法。
但并不总是每步 4 个值(取决于维度和使用的方法)。因此,最好使用回调函数来记录每个步骤后的成本。 当前成本应存储在全局变量中,因此不必重新计算。
def fun(x):
global current_cost
current_cost = x[0]**2 - 2*x[0] + x[1]**4
return current_cost
def log_cost(x):
cost_values.append(current_cost)
cost_values = []
minimize(fun, [3, 2], callback=log_cost)
print(cost_values)
此打印
[3.5058199763814986, -0.2358850818406083, -0.56104822688320077, -0.88774448831043995, -0.96018358963745964, -0.98750765702936738, -0.99588975368993771, -0.99867208501468863, -0.99956795994852465, -0.99985981414137615, -0.99995446605426996, -0.99998521591611178, -0.99999519917089297, -0.99999844105574265, -0.99999949379700426, -0.99999983560485239, -0.99999994662329761, -0.99999998266175671]
我想出了一种使用 stdlib 功能的 hack,它使用 sys.stdout 的“深度”重定向。 请注意,这不适用于 jupyter,因为 IPython 劫持了 sys.stdout,这会删除 .fileno 属性。
可以通过这种方式使用 tempfile.SpooledTemporaryFile 修补 Jupyter,从而消除此问题。 我不知道。
我相信因为这使用操作系统级文件描述符,所以它也不是线程安全的。
import os
import sys
import tempfile
class forcefully_redirect_stdout(object):
''' Forces stdout to be redirected, for both python code and C/C++/Fortran
or other linked libraries. Useful for scraping values from e.g. the
disp option for scipy.optimize.minimize.
'''
def __init__(self, to=None):
''' Creates a new forcefully_redirect_stdout context manager.
Args:
to (`None` or `str`): what to redirect to. If type(to) is None,
internally uses a tempfile.SpooledTemporaryFile and returns a UTF-8
string containing the captured output. If type(to) is str, opens a
file at that path and pipes output into it, erasing prior contents.
Returns:
`str` if type(to) is None, else returns `None`.
'''
# initialize where we will redirect to and a file descriptor for python
# stdout -- sys.stdout is used by python, while os.fd(1) is used by
# C/C++/Fortran/etc
self.to = to
self.fd = sys.stdout.fileno()
if self.to is None:
self.to = tempfile.SpooledTemporaryFile(mode='w+b')
else:
self.to = open(to, 'w+b')
self.old_stdout = os.fdopen(os.dup(self.fd), 'w')
self.captured = ''
def __enter__(self):
self._redirect_stdout(to=self.to)
return self
def __exit__(self, *args):
self._redirect_stdout(to=self.old_stdout)
self.to.seek(0)
self.captured = self.to.read().decode('utf-8')
self.to.close()
def _redirect_stdout(self, to):
sys.stdout.close() # implicit flush()
os.dup2(to.fileno(), self.fd) # fd writes to 'to' file
sys.stdout = os.fdopen(self.fd, 'w') # Python writes to fd
if __name__ == '__main__':
import re
from scipy.optimize import minimize
def foo(x):
return 1/(x+0.001)**2 + x
with forcefully_redirect_stdout() as txt:
result = minimize(foo, [100], method='L-BFGS-B', options={'disp': True})
print('this appears before `disp` output')
print('here''s the output from disp:')
print(txt.captured)
lines_with_cost_function_values = \
re.findall(r'At iterate\s*\d\s*f=\s*-*?\d*.\d*D[+-]\d*', txt.captured)
fortran_values = [s.split()[-1] for s in lines_with_cost_function_values]
# fortran uses "D" to denote double and "raw" exp notation,
# fortran value 3.0000000D+02 is equivalent to
# python value 3.0000000E+02 with double precision
python_vals = [float(s.replace('D', 'E')) for s in fortran_values]
print(python_vals)