我有37个线性方程,其中36个变量采用矩阵形式:A x = b。 (A有37行和36列。)方程没有精确解,所以我使用了to find the closest answer的Matlab x = A \ b
。
问题是我也有一个条件,x的所有元素都应该是正数:xi> 0表示所有i。 x = A \ b
给出了某些元素的负值。我该如何应用这个约束?
以下是我正在使用的A和b的具体值:
A = [0.83 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.02 0.63 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.02 -0.37 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.02 -0.37 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.02 -0.37 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.02 -0.2 0 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.15 0 0 0 0 0 -0.32 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.15 0 0 0 0 0.02 -0.33 0 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.15 0 0 0 0 0 -0.32 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.35 0 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 -0.32 0.17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.35 0 0 0 0 0.18 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 -0.32 0.17 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.52 0.17 0 0 0 0.18 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.35 0 0 0 0 0.018 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 -0.32 0.17 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.34 0.17 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.34 0.17 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.34 0.17 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.34 0.17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0.02 -0.17
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
b = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]';
你想在最小二乘意义上找到一个近似解x到A x = b,即你想要最小化
|| A x - b || 2 = xT AT A x + bT b - 2 xT AT b。
忽略常数项bTb并除以因子2,这符合quadratic programming problem的形式,这是为了最小化
1/2 xT H x + fT x,
如果我们选择H = AT A和f = - AT b。
quadprog
的相应用途是:
H = A' * A;
f = - A' * b;
x = quadprog(H, f)
您还希望x的元素为正数。可以使用quadprog
,A
和b
的附加参数引入非负性约束(不要与你的矩阵混淆!):
n = size(A, 2);
x = quadprog(H, f, -eye(n), zeros(n, 1))
积极性约束没有意义,因为如果最优解决方案涉及x的一个或多个元素恰好为0,那么相应元素越小越严格正解:0.01将优于0.1,0.001将是优于0.01等等 - 没有自然界限。如果你想确保解决方案是全面的,你必须自己设置一个有限的边界:
x = quadprog(H, f, -eye(n), zeros(n, 1) + 0.001)
现在x的元素的最小可能值是0.001。
在问题补充了A和b的实际数据之后更新:使用代码
H = A' * A;
f = - A' * b;
n = size(A, 2);
x = quadprog(H, f, -eye(n), zeros(n, 1))
我得到了结果:
Minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint tolerance.
<stopping criteria details>
x =
0.000380906335150292
3.90638261088393e-05
0.0111196970167585
0.0227055107206744
0.0318402514628274
0.0371743514880516
0.000800900221354844
0.00746652476710186
0.0180511534370576
0.0282423767946842
0.0362606972021829
0.0417582260990786
0.00860220929402253
0.0174105435824309
0.0265771677458008
0.0343071472371469
0.0395176470725881
0.0419494410289298
0.0187719294637544
0.0268976053211278
0.0336818044612046
0.0382365751296441
0.0398823076542831
0.0391016682549663
0.0279383031707377
0.0339393563379992
0.0377917413001034
0.0382731422972829
0.0338557405807941
0.0217568643500703
0.0343698083354502
0.0381554349806972
0.0392353941260779
0.0368010570888738
0.031271868401718
0.0258232230013864
当x> 0条件时,这将是线性优化问题。解决这个问题的最佳算法是单纯形算法。这个想法是每个线性方程aix = bi提供一条线,这些线的组合提供一个多边形/多面体,答案是这个多面体/多边形的顶点之一。单纯形算法非常标准,有许多可用的函数和库可以计算出来。
Matlab函数lsqlin
或lsqnonneg
可用于解决您的问题。例如:
x=lsqnonneg(A,b)
会给你你想要的东西。