我正在尝试对不同温度传感器进行线性组合,并使用应变传感器对其进行曲线拟合。
我所做的是我可以将一个温度传感器与一个应变传感器配合使用。
但我不知道如何在一个应变传感器上进行不同温度传感器的线性组合。
这是我的尝试:
def process_data_curve_fitting(temperature, strain):
#mean_T = (temperature[[i for i in temperature.columns.tolist() if str(i)[:2] == 'TW']].mean(axis=1))
print("process data")
T1 = temperature['T1'].tolist()
T2 = temperature['T2'].tolist()
T3 = temperature['T3'].tolist()
T4 = temperature['T4'].tolist()
T5 = temperature['T5'].tolist()
T6 = temperature['T6'].tolist()
T7 = temperature['T7'].tolist()
T8 = temperature['T8'].tolist()
T9 = temperature['T9'].tolist()
T10 = temperature['T10'].tolist()
df = pd.DataFrame(list(zip(T1, T2, T3, T4, T5, T6, T7, T8, T9, T10)))
mean_T = df.mean(axis = 1)
print(mean_T)
Sensor_Names = [ 'W_A1', 'W_A2', 'W_F1', 'W_F2', 'W_F4', 'W_S1', 'W_S2', 'W_S3', 'W_S4', 'W_KF1', 'W_KF2', 'W_KF3', 'W_KF4', 'W_DB1', 'W_DB2']
ys = []
for i in range(len(strain)):
cof = np.polyfit(mean_T, strain[i], 2)
poly = np.polyval(cof, mean_T)
ys.append(poly)
print (cof)
print (poly)
for i in range(len(strain)):
fig = plt.figure()
plt.scatter(mean_T, strain[i],s=0.1)
# fig.savefig(r'c:\\ahmed\\'+Sensor_Names[i]+'.png')
plt.plot(mean_T, ys[i], color='r')
fig.savefig(r'c:\\ahmed\\'+"Curve_fitting__" + Sensor_Names[i]+'.png',dpi=300)
plt.ylabel('strain' + Sensor_Names[i])
plt.xlabel('temperature')
作为两个温度传感器的“概念证明”(既没有噪声也没有考虑现实参数):
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import leastsq
def strain( t, a, b, c, d ):
return a * t**3 + b * t**2 + c * t + d
def residuals( params, x1Data, x2Data, yData ):
s1, s2, a, b, c, d = params
cxData = [ (s1**2 * x1 + s2**2 * x2) /( s1**2 + s2**2 ) for x1, x2 in zip( x1Data, x2Data) ]
diff = [ strain( x, a, b, c, d ) -y for x, y in zip( cxData, yData ) ]
return diff
timeList = np.linspace( 0, 25, 55 )
t1List = np.fromiter( ( 5 + 25. * (1 - np.exp( -t / 9. ) )for t in timeList ), np.float )
t2List = np.fromiter( (30. * (1 - np.exp( -t / 7. ) ) * ( 1 - np.exp( -t / 3. ) ) for t in timeList ), np.float )
combinedList = np.fromiter( ( (.7 * a + .2 * b)/.9 for a, b in zip( t1List, t2List ) ), np.float )
strainList = np.fromiter( ( strain( t, .01, -.1, .88, .2 ) for t in combinedList ), np.float )
fit, ier = leastsq( residuals, [.71,.22, 0,0, .1, .1 ], args=( t1List, t2List, strainList ), maxfev=5000 )
print fit
fittedT = [ (fit[0]**2 * x1 + fit[1]**2 *x2 ) /( fit[0]**2 + fit[1]**2 ) for x1, x2 in zip( t1List, t2List) ]
fittedS = [ strain( t, *(fit[2:]) ) for t in fittedT ]
fig = plt.figure()
ax = fig.add_subplot( 3, 1, 1 )
bx = fig.add_subplot( 3, 1, 2 )
cx = fig.add_subplot( 3, 1, 3 )
ax.plot( timeList, t1List )
ax.plot( timeList, t2List )
ax.plot( timeList, combinedList )
bx.plot( combinedList, strainList, linestyle='', marker='x' )
bx.plot( fittedT, fittedS )
cx.plot( timeList, fittedT ,'--')
cx.plot( timeList, combinedList,':' )
plt.show()
给予
[ 4.21350842e+03 2.25221499e+03 1.00000000e-02 -1.00000000e-01 8.80000000e-01 2.00000000e-01]
并显示:
上:温度1(蓝色)和2(橙色)以及线性组合(绿色)中心:“模拟数据”(蓝色)和适合(橙色)底部:适合温度(蓝色),真实温度(橙色)
根据实际数据,可能需要一些摆弄。