使用Google Speech API,您可以将语音转换为基于文本文件或实时流
有任何方法可以加快流程,即发送并行请求或类似的请求? 我是Google Cloud Services的新手,因此对任何建议都非常感谢。
google文字对语音和语音的文字和言语的语音诊断 我正在为我的学生设计一个python数学项目,其中有一个主题,例如圆的属性,他们应该能够要求与AI互动以在他们的任何东西上获得帮助...
`# Initialize Dialogflow, TTS, and Speech clients DIALOGFLOW_PROJECT_ID = 'your-dialogflow-project-id' DIALOGFLOW_LANGUAGE_CODE = 'en-GB' SESSION_ID = 'unique-session-id' DIALOGFLOW_CLIENT = dialogflow.SessionsClient() SESSION = DIALOGFLOW_CLIENT.session_path(DIALOGFLOW_PROJECT_ID, SESSION_ID) TTS_CLIENT = texttospeech.TextToSpeechClient() speech_client = speech.SpeechClient() logger = logging.getLogger(__name__) # Define a timeout duration (e.g., 60 seconds) INTERACTION_TIMEOUT = 60 # seconds def circle_view(request): return render(request, 'pdf/circle.html') @csrf_exempt def start_interaction(request): if request.method == 'POST': # Initialize session variables request.session['current_part'] = 'circumference' request.session['completed_parts'] = { 'circumference': False, 'radius': False, 'diameter': False } request.session['last_interaction'] = time.time() request.session['awaiting_ai_response'] = False # New session variable welcome_prompt = """ Welcome to the circle section of AI Maths! We'll be learning about three key parts of a circle: the circumference, the radius, and the diameter. You can ask questions anytime you're unsure. """ instruction_prompt = """ Let's start by identifying the circumference. Please click on the circumference line in the diagram. """ full_prompt = welcome_prompt + instruction_prompt return generate_speech_response(full_prompt, speaker='AI', request=request) return JsonResponse({'error': 'Invalid request method'}, status=405) @csrf_exempt @csrf_exempt def handle_circle_click(request): if request.method == 'POST': # Reset flag indicating we are not waiting for an AI response request.session['awaiting_ai_response'] = False logger.debug("Resetting awaiting_ai_response flag to False.") # Check if interaction has timed out last_interaction = request.session.get('last_interaction', 0) if time.time() - last_interaction > INTERACTION_TIMEOUT: return JsonResponse({'error': 'Interaction timeout. Please restart the interaction.'}, status=408) # Update last interaction time request.session['last_interaction'] = time.time() # Process the request try: data = json.loads(request.body) element_id = data.get('elementId') current_part = request.session.get('current_part', 'circumference') if not element_id: return JsonResponse({'error': 'Missing elementId in request.'}, status=400) prompt = "" if element_id == current_part: if current_part == 'circumference': prompt = ( "The student correctly identified the circumference. Congratulate them, define the circumference line as the distance around the outside of the circle and then ask them to select the radius." ) request.session['current_part'] = 'radius' elif current_part == 'radius': prompt = ( "The student correctly identified the radius. Congratulate them, define the radius line as the distance from the center point to a point on the circumference and then ask them to select the diameter." ) request.session['current_part'] = 'diameter' elif current_part == 'diameter': prompt = ( "The student correctly identified the diameter. Congratulate them, define the diameter line as the distance from one point on the circumference to another, passing through the center, and then conclude the lesson." ) request.session.pop('current_part', None) else: if current_part == 'circumference': prompt = ( "The student incorrectly identified the circumference. Kindly tell them they are incorrect, use a creative analogy to correct them and encourage them to try again by clicking on the circumference line." ) elif current_part == 'radius': prompt = ( "The student incorrectly identified the radius. Kindly tell them they are incorrect, use a creative analogy to correct them and encourage them to try again by clicking on the radius line." ) elif current_part == 'diameter': prompt = ( "The student incorrectly identified the diameter. Kindly tell them they are incorrect, use a creative analogy to correct them and encourage them to try again by clicking on the diameter line." ) response_text = generate_response(prompt) return generate_speech_response(response_text, speaker='AI', request=request) except json.JSONDecodeError as e: logger.error("Failed to decode JSON: %s", str(e)) return JsonResponse({'error': 'Invalid JSON format'}, status=400) except Exception as e: logger.error("Unhandled exception: %s", str(e)) return JsonResponse({'error': str(e)}, status=500) return JsonResponse({'error': 'Invalid request method'}, status=405) @csrf_exempt def stop_interaction(request): if request.method == 'POST': request.session.pop('current_part', None) request.session.pop('completed_parts', None) request.session.pop('last_interaction', None) request.session.pop('awaiting_ai_response', None) prompt = "The interaction has been stopped. If you wish to restart, click the start interaction button." return generate_speech_response(prompt, speaker='AI', request=request) return JsonResponse({'error': 'Invalid request method'}, status=405) @csrf_exempt def handle_user_query(request): if request.method == 'POST': try: data = json.loads(request.body) user_query = data.get('userQuery') speaker = data.get('speaker', 'User') if not user_query: logger.error("Missing userQuery in request.") return JsonResponse({'error': 'Missing userQuery'}, status=400) logger.debug("Received query from speaker: %s", speaker) logger.debug("Current awaiting_ai_response flag: %s", request.session.get('awaiting_ai_response')) if speaker == 'AI': if request.session.get('awaiting_ai_response'): logger.info("Ignoring AI response to prevent feedback loop.") request.session['awaiting_ai_response'] = False # Reset flag to avoid feedback loop return JsonResponse({'message': 'AI response ignored.'}, status=200) else: logger.error("Unexpected AI response received when not awaiting an AI response.") return JsonResponse({'error': 'Unexpected AI response.'}, status=400) # Generate AI response based on user query response_text = generate_response(user_query) request.session['awaiting_ai_response'] = True # Set flag indicating waiting for an AI response logger.debug("Generating response for user query.") return generate_speech_response(response_text, speaker='AI', request=request) except json.JSONDecodeError as e: logger.error("Failed to decode JSON: %s", str(e)) return JsonResponse({'error': 'Invalid JSON format'}, status=400) except Exception as e: logger.error("Unhandled exception: %s", str(e)) return JsonResponse({'error': str(e)}, status=500) return JsonResponse({'error': 'Invalid request method'}, status=405) @csrf_exempt def handle_audio_diarization(request): if request.method == 'POST': try: data = json.loads(request.body) audio_content = data.get('audioContent') if not audio_content: return JsonResponse({'error': 'Missing audioContent'}, status=400) audio_content = base64.b64decode(audio_content) # Configure diarization settings audio = speech.RecognitionAudio(content=audio_content) diarization_config = speech.SpeakerDiarizationConfig( enable_speaker_diarization=True, min_speaker_count=2, max_speaker_count=10 ) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=16000, language_code='en-GB', diarization_config=diarization_config ) response = speech_client.recognize(config=config, audio=audio) # Process the response to extract speaker diarization information results = [] for result in response.results: for alternative in result.alternatives: for word_info in alternative.words: word = word_info.word speaker_tag = word_info.speaker_tag speaker = 'AI' if speaker_tag == 1 else 'User' # Adjust based on actual speaker tag values # Debug: Log speaker_tag and word logger.debug(f"Word: {word}, Speaker Tag: {speaker_tag}") results.append({ 'word': word, 'speaker': speaker }) return JsonResponse({'transcript': results}) except json.JSONDecodeError as e: logger.error("Failed to decode JSON: %s", str(e)) return JsonResponse({'error': 'Invalid JSON format'}, status=400) except Exception as e: logger.error("Unhandled exception: %s", str(e)) return JsonResponse({'error': str(e)}, status=500) return JsonResponse({'error': 'Invalid request method'}, status=405) def generate_response(prompt): """Generate text response using OpenAI API with context.""" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful and concise math tutor."}, {"role": "user", "content": prompt} ], max_tokens=150, temperature=0.7 ) logger.debug("AI response: %s", response.choices[0].message['content'].strip()) return response.choices[0].message['content'].strip() def generate_speech_response(text, speaker=None, request=None): logger.debug("Generating speech response for text: %s", text) synthesis_input = texttospeech.SynthesisInput(text=text) voice = texttospeech.VoiceSelectionParams( language_code="en-GB", name="en-GB-Standard-F" ) audio_config = texttospeech.AudioConfig( audio_encoding=texttospeech.AudioEncoding.MP3 ) response = TTS_CLIENT.synthesize_speech( input=synthesis_input, voice=voice, audio_config=audio_config ) audio_content = response.audio_content if not isinstance(audio_content, bytes): logger.error("Audio content is not of type bytes.") return JsonResponse({'error': 'Audio content error'}, status=500) audio_base64 = base64.b64encode(audio_content).decode('utf-8') result = {'audioContent': audio_base64} if speaker: result['speaker'] = speaker if request: logger.debug("Resetting awaiting_ai_response flag.") request.session['awaiting_ai_response'] = False # Reset flag after response is sent return JsonResponse(result) `
const recognition = new SpeechRecognition(); recognition.continuous = true; recognition.lang = 'en-US'; recognition.onresult = (event) => {...} recognition.start();
从网络浏览器传输麦克风音频时,如何从 Google 语音到文本 API 获得更好的转录准确性?
我正在尝试制作一个可以进行实时语音到文本转录的 Vue 组件。录制的音频应限制在 5 秒左右。 我发现这个实现使用了音频工作...
我正在使用最新版本的Python(3.9)的语音识别。由于某种原因,pip 不允许(仍然不允许)我安装 pyaudio。 错误消息示例: _portaudio模块....
GoogleCloud Speech2Text“long_running_recognize”响应对象不可迭代
从 Google 云服务运行语音转文本 api 请求时(超过 60 秒的音频,因此我需要使用 long_running_recognize 函数,以及从云存储桶检索音频)...
如何通过 HTTP/REST 访问 Google Cloud Speech-to-text v2 API
即使我事先确保使用服务帐户进行身份验证,但在尝试调用 Google 语音转文本 v2 API 时收到权限错误。 API调用响应: { “错误”...
我正在尝试在 Expo 上录制音频并使用 Google 的语音转文本服务获取其转录。 它已经可以在 iOS 上运行,但还不能在 Android 上运行。我觉得是录音的问题
Google Cloud 文本转语音 API:在浏览器上播放时突出显示文本
问题是在浏览器上而不是Android上(因为标签似乎建议Android文本到语音)。 我正在使用 Google Cloud Text-to-Speech API (https://cloud.google.com/text-to-speech/) 进行转换
我很难理解与块生成器和转录过程相关的Python脚本摘录的动态。 这是完整的代码:https://cloud.google.com/speech-to-text/docs/
我开始使用谷歌语音API来转录音频。 正在转录的音频包含许多依次说出的数字。 例如。 273298 但转录结果是 270-3298 我的咕...
我正在使用流音频和 wav 文件测试 google Speech-to-Text API。 我正在使用电话音频:8000 采样率、8 位、mulaw 编码。 Google 配置已设置
我似乎在文档中找不到如何使用谷歌语音V2 API的任何地方。由于某种原因,V2 似乎比 V1 便宜(根据谷歌的语音定价表 - 虽然我不知道......
无法在 ESP32 上与 google 云语音转文本执行握手。 [PK - 公钥标签或值无效(仅支持 RSA 和 EC)]
我正在尝试与speech.googleapis.com建立连接。我正在使用 https://github.com/MhageGH/esp32_CloudSpeech/tree/master/esp32_CloudSpeech 中的代码。我修改了network_param.h...
我正在为我的项目使用 google-cloud-speech api 。我正在使用 Pipenv 作为虚拟环境,我安装了 google-cloud-speech api pipelinev 安装 google-cloud-speech 和 Pipenv 更新好...
我正在查看 Speech-to-Text API,但有一些问题: v1 和 v1p1 有什么区别? Speech-to-Text v2 中的 chirp 模型是否支持从 stre 转录音频...
错误:7 PERMISSION_DENIED:您的应用程序已使用 Google Cloud SDK 中的最终用户凭据进行身份验证
几个月前,这在我的 websocket 服务器内部没有代码更改的情况下工作,但是今天使用它,似乎 Google 语音到文本 api 不再允许使用 acc 进行身份验证...
我在 Node js 中使用 Google 的 Speech-to-Text API。它返回前几个单词的识别结果,但随后忽略音频文件的其余部分。截止点是任何
我正在尝试使用流音频输入谷歌的语音到文本。 我有一个简单的 JS 代码,该代码在按下按钮时记录音频并使用 websockets 将音频发送到 fastapi 后端。在 fastapi 中...