我在ubuntu 16.04中运行脚本时收到此错误。请耐心等待我,我是python的新手,我已经检查了互联网上已有的选项,但我无法修复它。
RuntimeError: cuda runtime error (10) : invalid device ordinal at torch/csrc/cuda/Module.cpp:32
我目前正在运行此文件。
from __future__ import print_function
from models import LipRead
import torch
import toml
from training import Trainer
from validation import Validator
print("Loading options...")
with open('options.toml', 'r') as optionsFile:
options = toml.loads(optionsFile.read())
if(options["general"]["usecudnnbenchmark"] and options["general"] ["usecudnn"]):
print("Running cudnn benchmark...")
torch.backends.cudnn.benchmark = True
#Create the model.
model = LipRead(options)
if(options["general"]["loadpretrainedmodel"]):
model.load_state_dict(torch.load(options["general"] ["pretrainedmodelpath"]))
#Move the model to the GPU.
if(options["general"]["usecudnn"]):
model = model.cuda(options["general"]["gpuid"])
trainer = Trainer(options)
validator = Validator(options)
for epoch in range(options["training"]["startepoch"], options["training"]["epochs"]):
if(options["training"]["train"]):
trainer.epoch(model, epoch)
if(options["validation"]["validate"]):
validator.epoch(model)
我怀疑这个文件与弹出的错误有关
Title = "TOML Example"
[general]
usecudnn = true
usecudnnbenchmark = true
gpuid = 0
loadpretrainedmodel = true
pretrainedmodelpath = "trainedmodel.pt"
savemodel = true
modelsavepath = "savedmodel.pt"
[input]
batchsize = 18
numworkers = 18
shuffle = true
[model]
type = "LSTM"
inputdim = 256
hiddendim = 256
numclasses = 500
numlstms = 2
[training]
train = true
epochs = 15
startepoch = 10
statsfrequency = 1000
dataset = "/udisk/pszts-ssd/AV-ASR-data/BBC_Oxford/lipread_mp4"
learningrate = 0.003
momentum = 0.9
weightdecay = 0.0001
[validation]
validate = true
dataset = "/udisk/pszts-ssd/AV-ASR-data/BBC_Oxford/lipread_mp4"
saveaccuracy = true
accuracyfilelocation = "accuracy.txt"
这个错误主要是在我最终达到的gpuid行中。
试试这个
import torch
print(torch.cuda.is_available())
如果输出为False,则意味着PyTorch未检测到GPU。我有同样的问题,并重新安装Pytorch为我工作。您可能还想看看这个https://github.com/pytorch/pytorch/issues/6098。
如果预先训练的模型在不同数量的Cuda设备上进行训练,则可能会出现该错误。例如,在训练模型时,您使用了3个Cuda设备,现在您在仅具有单个Cuda设备的设备上加载相同的训练模型。