给出两组d
维点。如何在Matlab中最有效地计算成对平方欧氏距离矩阵?
符号:第一组由(numA,d)
矩阵A
给出,第二组由(numB,d)
矩阵B
给出。得到的距离矩阵的格式应为(numA,numB)
。
示例点:
d = 4; % dimension
numA = 100; % number of set 1 points
numB = 200; % number of set 2 points
A = rand(numA,d); % set 1 given as matrix A
B = rand(numB,d); % set 2 given as matrix B
这里通常给出的答案是基于bsxfun
(参见例如[1])。我提出的方法基于矩阵乘法,结果比我能找到的任何类似算法快得多:
helpA = zeros(numA,3*d);
helpB = zeros(numB,3*d);
for idx = 1:d
helpA(:,3*idx-2:3*idx) = [ones(numA,1), -2*A(:,idx), A(:,idx).^2 ];
helpB(:,3*idx-2:3*idx) = [B(:,idx).^2 , B(:,idx), ones(numB,1)];
end
distMat = helpA * helpB';
请注意:对于常数d
,可以通过硬编码实现替换for
-loop,例如
helpA(:,3*idx-2:3*idx) = [ones(numA,1), -2*A(:,1), A(:,1).^2, ... % d == 2
ones(numA,1), -2*A(:,2), A(:,2).^2 ]; % etc.
评价:
%% create some points
d = 2; % dimension
numA = 20000;
numB = 20000;
A = rand(numA,d);
B = rand(numB,d);
%% pairwise distance matrix
% proposed method:
tic;
helpA = zeros(numA,3*d);
helpB = zeros(numB,3*d);
for idx = 1:d
helpA(:,3*idx-2:3*idx) = [ones(numA,1), -2*A(:,idx), A(:,idx).^2 ];
helpB(:,3*idx-2:3*idx) = [B(:,idx).^2 , B(:,idx), ones(numB,1)];
end
distMat = helpA * helpB';
toc;
% compare to pdist2:
tic;
pdist2(A,B).^2;
toc;
% compare to [1]:
tic;
bsxfun(@plus,dot(A,A,2),dot(B,B,2)')-2*(A*B');
toc;
% Another method: added 07/2014
% compare to ndgrid method (cf. Dan's comment)
tic;
[idxA,idxB] = ndgrid(1:numA,1:numB);
distMat = zeros(numA,numB);
distMat(:) = sum((A(idxA,:) - B(idxB,:)).^2,2);
toc;
结果:
Elapsed time is 1.796201 seconds.
Elapsed time is 5.653246 seconds.
Elapsed time is 3.551636 seconds.
Elapsed time is 22.461185 seconds.
有关w.r.t的更详细评估数据点的维度和数量遵循以下讨论(@comments)。事实证明,在不同的环境中应该首选不同的算法。在非时间紧急情况下,只需使用pdist2
版本。
进一步发展:人们可以考虑用基于相同原理的任何其他指标替换平方欧几里得:
help = zeros(numA,numB,d);
for idx = 1:d
help(:,:,idx) = [ones(numA,1), A(:,idx) ] * ...
[B(:,idx)' ; -ones(1,numB)];
end
distMat = sum(ANYFUNCTION(help),3);
然而,这非常耗时。用d
二维矩阵替换较小的help
三维矩阵d
可能是有用的。特别是对于d = 1
,它提供了一种通过简单矩阵乘法计算成对差异的方法:
pairDiffs = [ones(numA,1), A ] * [B'; -ones(1,numB)];
你有什么进一步的想法吗?
对于平方欧几里德距离,也可以使用以下公式
||a-b||^2 = ||a||^2 + ||b||^2 - 2<a,b>
其中<a,b>
是a
和b
之间的点积
nA = sum( A.^2, 2 ); %// norm of A's elements
nB = sum( B.^2, 2 ); %// norm of B's elements
distMat = bsxfun( @plus, nA, nB' ) - 2 * A * B' ;
最近,我一直在told tha作为R2016b这个计算平方欧几里德距离的方法比接受的方法快。