我一直在尝试将多项式曲面拟合到一组具有 3 个坐标的点。
设数据为:
DATA <- with(mtcars, as.data.frame(cbind(1:32, wt,disp,mpg)))
我一直在尝试使用以下方法绘制表面:
例如:
library(scatterplot3d)
attach(mtcars)
DATA <- as.data.frame(cbind(1:32, wt,disp,mpg))
scatterplot3d(wt,disp,mpg, main="3D Scatterplot")
model <- loess(mpg ~wt + disp, data=DATA)
x <-range(DATA$wt)
x <- seq(x[1], x[2], length.out=50)
y <- range(DATA$disp)
y <- seq(y[1], y[2], length.out=50)
z <- outer(x,y,
function(wt,disp)
predict(model, data.frame(wt,disp)))
z
p <- persp(x,y,z, theta=30, phi=30,
col="lightblue",expand = 0.5,shade = 0.2,
xlab="wt", ylab="disp", zlab="mpg")
我也尝试过使用 surf.ls 功能:
surf.ls(2,DATA[,2],DATA[,3],DATA[,4])
但是我得到的看起来像这样: 我真的不知道如何将其转换为 3D 图,更重要的是,如何获得最佳拟合曲面的公式。
我非常感谢您的帮助。
PS 我已经删除了上一篇文章,并在这篇文章中包含了更多详细信息。
试试这个:
attach(mtcars)
DATA <- as.data.frame(cbind(1:32, wt,disp,mpg))
x_wt <- DATA$wt
y_disp <- DATA$disp
z_mpg <- DATA$mpg
fit <- lm(z_mpg ~ poly(x_wt, y_disp, degree = 2), data = DATA)
要使用 rsm 绘图,请使用以下命令:
library(rsm)
image(fit, y_disp ~ x_wt)
contour(fit, y_disp ~ x_wt)
persp(fit, y_disp ~ x_wt, zlab = "z_mpg")
要使用 ggplot 进行绘图,请使用以下命令:
## ggplot
# Use rsm package to create surface model.
library(rsm)
SurfMod <- contour(fit, y_disp ~ x_wt)
# extract list values from rsm Surface Model
Xvals <- SurfMod$`x_wt ~ y_disp`[1]
Yvals <- SurfMod$`x_wt ~ y_disp`[2]
Zvals <- SurfMod$`x_wt ~ y_disp`[3]
# Construct matrix with col and row names
SurfMatrix <- Zvals$z
colnames(SurfMatrix) <- Yvals$y
rownames(SurfMatrix) <- Xvals$x
# Convert matrix to data frame
library(reshape2)
SurfDF <- melt(SurfMatrix)
library(ggplot2)
gg <- ggplot(data = SurfDF) +
geom_tile(data = SurfDF, aes(Var1, Var2,z = value, fill = value)) +
stat_contour(data = SurfDF, aes(Var1, Var2, z = value, color = ..level..)) +
scale_colour_gradient(low = "green", high = "red") +
geom_point(data = DATA, aes(wt, disp, z = mpg, color = mpg)) +
geom_text(data = DATA, aes(wt, disp,label=mpg),hjust=0, vjust=0) +
scale_fill_continuous(name="mpg") +
xlab("x_wt") +
ylab("y_disp")
library(directlabels)
direct.label.ggplot(gg, "angled.endpoints")
要查看所有可用的 direct.label 方法,请访问 http://directlabels.r-forge.r-project.org/docs/index.html
您也可以使用
plotly
绘制拟合曲面:
dat <- data.frame(ChickWeight) %>%
mutate(Chick = as.numeric(Chick))
# polynomial (curvy) surfaces:
fit <- lm(weight ~ factor(Diet)*poly(Time, Chick, degree=2), data=dat)
dat$predicted3d <- predict(fit, data=dat)
# points....
p <- plot_ly(data = dat, x = ~Time, y = ~Chick, z = ~weight, color = ~Diet, type = "scatter3d", mode="markers", alpha=.95)
# surface 1
p <- add_trace(p, data = dat %>% filter(Diet == 1), x = ~Time, y = ~Chick, z = ~weight, color = ~Diet, type = "mesh3d", opacity=.95)
# surface 2
p <- add_trace(p, data = dat %>% filter(Diet == 2), x = ~Time, y = ~Chick, z = ~weight, color = ~Diet, type = "mesh3d", opacity=.95)
# surface 3
p <- add_trace(p, data = dat %>% filter(Diet == 3), x = ~Time, y = ~Chick, z = ~weight, color = ~Diet, type = "mesh3d", opacity=.95)
# surface 4
p <- add_trace(p, data = dat %>% filter(Diet == 4), x = ~Time, y = ~Chick, z = ~weight, color = ~Diet, type = "mesh3d", opacity=.95)
p