我使用的是 XGBRegressor
来拟合模型,使用 gridsearchcv
. 我想visulaize的树木。
这里是我遵循的链接(如果重复)。如何从gridsearchcv绘制决策树?
xgb = XGBRegressor(learning_rate=0.02, n_estimators=600,silent=True, nthread=1)
folds = 5
grid = GridSearchCV(estimator=xgb, param_grid=params, scoring='neg_mean_squared_error', n_jobs=4, verbose=3 )
model=grid.fit(X_train, y_train)
办法1:
dot_data = tree.export_graphviz(model.best_estimator_, out_file=None,
filled=True, rounded=True, feature_names=X_train.columns)
dot_data
Error: NotFittedError: This XGBRegressor instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.
方法2:
tree.export_graphviz(best_clf, out_file='tree.dot',feature_names=X_train.columns,leaves_parallel=True)
subprocess.call(['dot', '-Tpdf', 'tree.dot', '-o' 'tree.pdf'])
同样的错误。
scikit-learn的 tree.export_graphviz
在这里是行不通的,因为你的 best_estimator_
不是一棵树,而是整个树的集合。
下面是你如何使用XGBoost自己的 plot_tree
和波士顿的住房数据。
from xgboost import XGBRegressor, plot_tree
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_boston
import matplotlib.pyplot as plt
X, y = load_boston(return_X_y=True)
params = {'learning_rate':[0.1, 0.5], 'n_estimators':[5, 10]} # dummy, for demonstration only
xgb = XGBRegressor(learning_rate=0.02, n_estimators=600,silent=True, nthread=1)
grid = GridSearchCV(estimator=xgb, param_grid=params, scoring='neg_mean_squared_error', n_jobs=4)
grid.fit(X, y)
我们最好的估计是:
grid.best_estimator_
# result (details may be different due to randomness):
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0,
importance_type='gain', learning_rate=0.5, max_delta_step=0,
max_depth=3, min_child_weight=1, missing=None, n_estimators=10,
n_jobs=1, nthread=1, objective='reg:linear', random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
silent=True, subsample=1, verbosity=1)
做完这些后,利用来自于... 这条线 来绘制,比如说,树#4。
fig, ax = plt.subplots(figsize=(30, 30))
plot_tree(grid.best_estimator_, num_trees=4, ax=ax)
plt.show()
同样,对于1号树:
fig, ax = plt.subplots(figsize=(30, 30))
plot_tree(grid.best_estimator_, num_trees=1, ax=ax)
plt.show()