我有以下DF:
code . role . persons
123 . Janitor . 3
123 . Analyst . 2
321 . Vallet . 2
321 . Auditor . 5
第一行意思是我有3对人的作用工友。我的问题是,我需要为每个人一行。我的DF应该是这样的:
df:
code . role . persons
123 . Janitor . 3
123 . Janitor . 3
123 . Janitor . 3
123 . Analyst . 2
123 . Analyst . 2
321 . Vallet . 2
321 . Vallet . 2
321 . Auditor . 5
321 . Auditor . 5
321 . Auditor . 5
321 . Auditor . 5
321 . Auditor . 5
我怎么可能用熊猫吗?
reindex
+ repeat
df.reindex(df.index.repeat(df.persons))
Out[951]:
code . role ..1 persons
0 123 . Janitor . 3
0 123 . Janitor . 3
0 123 . Janitor . 3
1 123 . Analyst . 2
1 123 . Analyst . 2
2 321 . Vallet . 2
2 321 . Vallet . 2
3 321 . Auditor . 5
3 321 . Auditor . 5
3 321 . Auditor . 5
3 321 . Auditor . 5
3 321 . Auditor . 5
PS:你可以add.reset_index(drop=True)
来获得新指数
温家宝的解决方案是非常好的,直观。这里有一个替代方案,呼吁repeat
上df.values
。
df
code role persons
0 123 Janitor 3
1 123 Analyst 2
2 321 Vallet 2
3 321 Auditor 5
pd.DataFrame(df.values.repeat(df.persons, axis=0), columns=df.columns)
code role persons
0 123 Janitor 3
1 123 Janitor 3
2 123 Janitor 3
3 123 Analyst 2
4 123 Analyst 2
5 321 Vallet 2
6 321 Vallet 2
7 321 Auditor 5
8 321 Auditor 5
9 321 Auditor 5
10 321 Auditor 5
11 321 Auditor 5