我在为cs231n assignment1实现矢量化svm渐变时遇到了这个问题。这是一个例子:
ary = np.array([[1,-9,0],
[1,2,3],
[0,0,0]])
ary[[0,1]] += np.ones((2,2),dtype='int')
它输出:
array([[ 2, -8, 1],
[ 2, 3, 4],
[ 0, 0, 0]])
一切都很好,直到行不唯一:
ary[[0,1,1]] += np.ones((3,3),dtype='int')
虽然它没有抛出错误,但输出真的很奇怪:
array([[ 2, -8, 1],
[ 2, 3, 4],
[ 0, 0, 0]])
我希望第二行应该是[3,4,5]而不是[2,3,4],我用来解决这个问题的天真方式是使用这样的for循环:
ary = np.array([[ 2, -8, 1],
[ 2, 3, 4],
[ 0, 0, 0]])
# the rows I want to change
rows = [0,1,2,1,0,1]
# the change matrix
change = np.random.randn((6,3))
for i,row in enumerate(rows):
ary[row] += change[i]
所以我真的不知道如何对这个for循环进行矢量化,在NumPy中有更好的方法吗?为什么做这样的事情是错的?:
ary[rows] += change
如果有人好奇我为什么要这样做,这里是我的svm_loss_vectorized函数的实现,我需要根据标签y来计算权重的渐变:
def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation.
Inputs and outputs are the same as svm_loss_naive.
"""
loss = 0.0
dW = np.zeros(W.shape) # initialize the gradient as zero
# transpose X and W
# D means input dimensions, N means number of train example
# C means number of classes
# X.shape will be (D,N)
# W.shape will be (C,D)
X = X.T
W = W.T
dW = dW.T
num_train = X.shape[1]
# transpose W_y shape to (D,N)
W_y = W[y].T
S_y = np.sum(W_y*X ,axis=0)
margins = np.dot(W,X) + 1 - S_y
mask = np.array(margins>0)
# get the impact of num_train examples made on W's gradient
# that is,only when the mask is positive
# the train example has impact on W's gradient
dW_j = np.dot(mask, X.T)
dW += dW_j
mul_mask = np.sum(mask, axis=0, keepdims=True).T
# dW[y] -= mul_mask * X.T
dW_y = mul_mask * X.T
for i,label in enumerate(y):
dW[label] -= dW_y[i]
loss = np.sum(margins*mask) - num_train
loss /= num_train
dW /= num_train
# add regularization term
loss += reg * np.sum(W*W)
dW += reg * 2 * W
dW = dW.T
return loss, dW
使用内置的np.add.at
内置的是用于此类任务的np.add.at
,即e。
np.add.at(ary, rows, change)
但是,由于我们正在使用2D
阵列,这可能不是最高性能的阵列。
利用快速matrix-multiplication
事实证明,我们可以利用非常有效的matrix-multplication
来处理这种情况,并且给出足够数量的重复行进行求和,可能非常好。以下是我们如何使用它 -
mask = rows == np.arange(len(ary))[:,None]
ary += mask.dot(change)
标杆
让时间np.add.at
方法对matrix-multiplication
基于一个更大的阵列 -
In [681]: ary = np.random.rand(1000,1000)
In [682]: rows = np.random.randint(0,len(ary),(10000))
In [683]: change = np.random.rand(10000,1000)
In [684]: %timeit np.add.at(ary, rows, change)
1 loop, best of 3: 604 ms per loop
In [687]: def matmul_addat(ary, row, change):
...: mask = rows == np.arange(len(ary))[:,None]
...: ary += mask.dot(change)
In [688]: %timeit matmul_addat(ary, rows, change)
10 loops, best of 3: 158 ms per loop