我使用的是tensorflow 1.8.0,python 3.6.5。 数据是虹膜数据集。这是代码:
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
X = iris['data']
y = iris['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
input_train=tf.estimator.inputs.numpy_input_fn(x=X_train,
y=y_train, num_epochs=100, shuffle=False)
classifier_model = tf.estimator.DNNClassifier(hidden_units=[10,
20, 10], n_classes=3, feature_columns=??)
这是我的问题,如何为 numpy 矩阵设置 feature_columns?
如果我将 X 和 y 转换为
pandas.DataFrame
,我可以对 feature_columns 使用以下代码,并且它可以在 DNNClassifier
模型中工作。
features = X.columns
feature_columns = [tf.feature_column.numeric_column(key=key) for key in features]
您可以将 numpy ndarray 包装在字典中并将其作为输入传递给
numpy_input_fn
方法作为输入 x
,然后使用该字典中的键来定义您的 feature_column
。另请注意,由于 X_train
中的每个数据都有 4 个维度,因此在定义 shape
时需要指定 tf.feature_column.numeric_column
参数。这是完整的代码:
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
iris = load_iris()
X = iris['data']
y = iris['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
input_train = tf.estimator.inputs.numpy_input_fn(
x = {'x': X_train},
y = y_train,
num_epochs = 100,
shuffle = False)
feature_columns = [tf.feature_column.numeric_column(key='x', shape=(X_train.shape[1],))]
classifier_model = tf.estimator.DNNClassifier(
hidden_units=[10, 20, 10],
n_classes=3,
feature_columns=feature_columns)