出于学习目的,我正在尝试自己实现 Adam。
这是我的 Adam 实现:
class ADAMOptimizer(Optimizer):
"""
implements ADAM Algorithm, as a preceding step.
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.99), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(ADAMOptimizer, self).__init__(params, defaults)
def step(self):
"""
Performs a single optimization step.
"""
loss = None
for group in self.param_groups:
#print(group.keys())
#print (self.param_groups[0]['params'][0].size()), First param (W) size: torch.Size([10, 784])
#print (self.param_groups[0]['params'][1].size()), Second param(b) size: torch.Size([10])
for p in group['params']:
grad = p.grad.data
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Momentum (Exponential MA of gradients)
state['exp_avg'] = torch.zeros_like(p.data)
#print(p.data.size())
# RMS Prop componenet. (Exponential MA of squared gradients). Denominator.
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
b1, b2 = group['betas']
state['step'] += 1
# L2 penalty. Gotta add to Gradient as well.
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# Momentum
exp_avg = torch.mul(exp_avg, b1) + (1 - b1)*grad
# RMS
exp_avg_sq = torch.mul(exp_avg_sq, b2) + (1-b2)*(grad*grad)
denom = exp_avg_sq.sqrt() + group['eps']
bias_correction1 = 1 / (1 - b1 ** state['step'])
bias_correction2 = 1 / (1 - b2 ** state['step'])
adapted_learning_rate = group['lr'] * bias_correction1 / math.sqrt(bias_correction2)
p.data = p.data - adapted_learning_rate * exp_avg / denom
if state['step'] % 10000 ==0:
print ("group:", group)
print("p: ",p)
print("p.data: ", p.data) # W = p.data
return loss
我认为我实现的一切都是正确的,但是与 torch.optim.Adam 相比,我实现的损失图非常尖。
torch.optim.Adam 损失图(下) 如果有人能告诉我我做错了什么,我将非常感激。
完整代码,包括数据、图表(超级容易运行):https://github.com/byorxyz/AMS_pytorch/blob/master/AdamFails_1dConvex.ipynb
看起来上面的代码没有存储
exp_avg
和 exp_avg_sq
的更新状态。另一个小细节是分母的偏差校正也适用于 epsilon。最后,Adam 默认使用 beta2=0.999
。
以下版本只需进行最少的更改就可以解决问题:
class ADAMOptimizer(torch.optim.Optimizer):
"""
implements ADAM Algorithm, as a preceding step.
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(ADAMOptimizer, self).__init__(params, defaults)
def step(self):
"""
Perform a single optimization step.
"""
loss = None
for group in self.param_groups:
for p in group['params']:
grad = p.grad.data
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Momentum (Exponential MA of gradients)
state['exp_avg'] = torch.zeros_like(p.data)
# RMS Prop componenet. (Exponential MA of squared gradients). Denominator.
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
b1, b2 = group['betas']
state['step'] += 1
# Add weight decay if any
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# Momentum
exp_avg = torch.mul(exp_avg, b1) + (1 - b1)*grad
# RMS
exp_avg_sq = torch.mul(exp_avg_sq, b2) + (1-b2)*(grad*grad)
mhat = exp_avg / (1 - b1 ** state['step'])
vhat = exp_avg_sq / (1 - b2 ** state['step'])
denom = torch.sqrt( vhat + group['eps'] )
p.data = p.data - group['lr'] * mhat / denom
# Save state
state['exp_avg'], state['exp_avg_sq'] = exp_avg, exp_avg_sq
return loss