过滤并添加NaN值行

问题描述 投票:1回答:1

我有一个数据框,看起来像:

Country     Year    Value
USA         1991     22
USA         1992     3
USA         1993     10
China       1991     1
China       1993     15
Argentina   1991     6
Argentina   1992     4

我需要一个能够找到每个国家缺少年份的函数,并在数据框中添加一个具有NaN值的行。

Country     Year    Value
USA         1991     22
USA         1992     3
USA         1993     10
China       1991     1
China       1992     NaN
China       1993     15
Argentina   1991     6
Argentina   1992     4
Argentina   1993     NaN

我还需要创建一个数据框,其值仅基于我拥有所有国家/地区的值的年份。

Country     Year    Value
USA         1991     22
China       1991     1
Argentina   1991     6
pandas dataframe filter nan
1个回答
2
投票

使用DataFrame.set_indexMultiIndex.from_productDataFrame.reindex

df = df.set_index(['Country','Year'])
mux = pd.MultiIndex.from_product(df.index.levels, names=df.index.names)
df = df.reindex(mux).reset_index()
print (df)
     Country  Year  Value
0  Argentina  1991    6.0
1  Argentina  1992    4.0
2  Argentina  1993    NaN
3      China  1991    1.0
4      China  1992    NaN
5      China  1993   15.0
6        USA  1991   22.0
7        USA  1992    3.0
8        USA  1993   10.0

对于没有缺失值的组:

vals = df1.loc[df1['Value'].isna(), 'Country'].unique()
df2 = df1[~df1['Country'].isin(vals)]
print (df2)
  Country  Year  Value
6     USA  1991   22.0
7     USA  1992    3.0
8     USA  1993   10.0

替代方案是使用DataFrame.unstackDataFrame.stack

s = df.set_index(['Country','Year']).unstack()
df1 = s.stack(dropna=False).reset_index()
print (df1)
     Country  Year  Value
0  Argentina  1991    6.0
1  Argentina  1992    4.0
2  Argentina  1993    NaN
3      China  1991    1.0
4      China  1992    NaN
5      China  1993   15.0
6        USA  1991   22.0
7        USA  1992    3.0
8        USA  1993   10.0

对于每列的所有值,使用DataFrame.dropna

df2 = s.dropna(axis=1).stack().reset_index()
print (df2)
     Country  Year  Value
0  Argentina  1991    6.0
1      China  1991    1.0
2        USA  1991   22.0

编辑:

如果得到:

ValueError:无法处理非唯一的多索引!

这意味着没有CountryYear列的独特组合:

print (df)
     Country  Year  Value
0        USA  1991     22 <-duplicate USA, 1991
1        USA  1991      3 <-duplicate USA, 1991
2        USA  1993     10
3      China  1991      1
4      China  1993     15
5  Argentina  1991      6
6  Argentina  1992      4

解决方案是通过set_index改变groupby,使用meansum这样的集合函数来获得独特的组合:

df = df.groupby(['Country','Year']).mean()
mux = pd.MultiIndex.from_product(df.index.levels, names=df.index.names)
df = df.reindex(mux).reset_index()
print (df)
     Country  Year  Value
0  Argentina  1991    6.0
1  Argentina  1992    4.0
2  Argentina  1993    NaN
3      China  1991    1.0
4      China  1992    NaN
5      China  1993   15.0
6        USA  1991   12.5
7        USA  1992    NaN
8        USA  1993   10.0
© www.soinside.com 2019 - 2024. All rights reserved.