请注意,这篇文章不会与 SO 上的以下任何相关文章重复:
我在实验中得到了数据:
import matplotlib.pyplot as plt
x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
plt.plot(x, y_NaOH)
plt.plot(x, y_NaHCO3)
plt.plot(x, y_BaOH2)
plt.show()
但是,我在标记异常值时遇到了困难,这是我尝试过的:
import matplotlib.pyplot as plt
import statistics
x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
# plt.plot(x, y_NaOH)
# plt.plot(x, y_NaHCO3)
# plt.plot(x, y_BaOH2)
# plt.show()
def detect_outlier(data_1):
threshold = 1
mean_1 = statistics.mean(data_1)
std_1 = statistics.stdev(data_1)
result_dataset = [y for y in data_1 if abs((y - mean_1)/std_1)<=threshold ]
return result_dataset
if __name__=="__main__":
dataset = y_NaHCO3
result_dataset = detect_outlier(dataset)
print(result_dataset)
# [374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0]
错误的是,这种方法总是过滤掉我的数据的边缘值,实际上我试图删除不适合曲线的点。
另外,我可以手动观察曲线的形状并标记异常值,但这确实花费了很多时间。我将非常感谢您的帮助。
我想在线绘制数据并将异常值标记为点,例如:
from matplotlib import pyplot as plt
x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
o_NaOH = [542.2]
o_NaHCO3 = [308.0]
o_BaOH2 = [493.1]
def sketch_rejected(xv, yv, y_out):
nx = []
ny = []
x_out = []
for ii, dd in enumerate(yv):
if dd not in y_out:
nx.append(xv[ii])
ny.append(dd)
else:
x_out.append(xv[ii])
plt.plot(nx, ny)
plt.scatter(x_out, y_out)
sketch_rejected(x, y_NaOH, o_NaOH)
sketch_rejected(x, y_NaHCO3, o_NaHCO3)
sketch_rejected(x, y_BaOH2, o_BaOH2)
plt.show()
异常值是曲线上的尖峰部分,其中的点不适合梯度。
我可以使用模块首先对数据进行回归,然后计算异常值,而不是手动绘制每个图表并识别异常值。
在现实生活中,我有大量的测试结果,但我不知道每个结果的通用方程。
感谢您的帮助。
有很多用于数据科学的 GitHub 存储库,您所要做的就是完成您的 git 安装
用于使用 outliers.py
from outliers.variance import graph
x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
graph(
xs=x,
ys=[y_NaOH, y_NaHCO3, y_BaOH2],
title='title',
legends=[f'legend {i + 1}' for i in range(len(x))],
xlabel='xlabel',
ylabel='ylabel',
)
这个想法:
拟合趋势线:计算线性回归线(趋势)
计算残差:对于每个数据点,残差是
实际值 (y) 与趋势值之间的绝对差
就在那时。
设置阈值:残差的标准差为 计算,阈值设定为该标准的3倍 偏差 (3σ),定义显着偏差。然而,为了您的 出于目的,您可以使用不同的阈值。
识别异常值:残差超过阈值的数据点 阈值被标记为异常值。
x = list(range(0, len(y)))
# Calculate linear regression with Numpy
regression_model = np.poly1d(np.polyfit(x, y, 1))
trend = regression_model(x)
print(f'trend: {trend}')
# Calculate residuals
y_np = np.array(y)
residuals = y_np - trend
trend_std_residuals = np.std(residuals)
# Threshold for unusual deviation (e.g., 3σ)
threshold = 3 * trend_std_residuals
print(f'threshold: {threshold}')
# Outliers calculated on aligned_y
outliers = []
for i in range(len(y)):
data_value = y[i]
trend_value = trend[i]
if data_value is not None:
residual = abs(data_value - trend_value)
if residual > threshold:
outliers.append(True)
else:
outliers.append(False)
else:
outliers.append(None)
print(f'outliers: {outliers}')