使用ns样条拟合进行预测(带有ns样条的glmer)

问题描述 投票:1回答:1

我正在使用glmer()函数来确定入侵蚯蚓物种的重量是否对明尼苏达州的4种不同树种产生显着影响。我想在调整其他变量后,在某个蚯蚓体重下预测事件的概率(因为它是逻辑回归/树种是否会存活)。我们也在考虑使用比值比来比较不同树种之间是否存在差异。所以我想使用predict()函数来指定一定的权重值并预测事件的概率。

这是summary(data)。我们特别关注meanwormwt(平均蠕虫重量)。我最终想要的是预测给定一定平均蠕虫权重值的事件的概率。例如,“当平均蠕虫重量为0.3246时,事件发生的概率是多少?”

Exclose        DensF       Species       Park       Parkclust       ParkPlot   
 No :2015   Min.   : 8.00   ACSA:1011   BRSP:672   BRSP1  : 168   BRSP11 :  96  
 Yes:2016   1st Qu.:28.00   QUMA:1004   CSP :672   BRSP2  : 168   BRSP2  :  96  
            Median :48.00   RHCA:1009   GLSP:672   BRSP3  : 168   BRSP6  :  96  
            Mean   :37.52   TIAM:1007   GRF :672   BRSP4  : 168   BRSP8  :  96  
            3rd Qu.:48.00               NLP :671   CAM1   : 168   CSP10  :  96  
            Max.   :48.00               SSP :672   CAM2   : 168   CSP2   :  96  
                                                   (Other):3023   (Other):3455  
     Unique           x               y                PlantId        Cluster   
 BRSP11C:  48   Min.   :1.000   Min.   :1.000   NLP8C.1.2  :   2   Min.   :1.0  
 BRSP11E:  48   1st Qu.:2.000   1st Qu.:2.000   SSP10E.2.5 :   2   1st Qu.:2.0  
 BRSP2C :  48   Median :3.000   Median :4.000   BRSP10C.1.1:   1   Median :3.0  
 BRSP2E :  48   Mean   :2.976   Mean   :4.142   BRSP10C.1.2:   1   Mean   :2.5  
 BRSP6C :  48   3rd Qu.:4.000   3rd Qu.:6.000   BRSP10C.1.3:   1   3rd Qu.:3.5  
 BRSP6E :  48   Max.   :6.000   Max.   :8.000   BRSP10C.1.4:   1   Max.   :4.0  
 (Other):3743                                   (Other)    :4023                
      Plot           LowLevXBlks   DeerFPP13park   DeerFPP15park     DeerAvgFrac    
 Min.   : 1.000   SSP10E:2 :   9   Min.   : 1.20   Min.   :0.9167   Min.   :0.1654  
 1st Qu.: 4.000   BRSP11C:1:   8   1st Qu.: 1.60   1st Qu.:1.9167   1st Qu.:0.4878  
 Median : 7.000   BRSP11C:2:   8   Median : 1.90   Median :2.4167   Median :0.5365  
 Mean   : 6.392   BRSP11C:3:   8   Mean   : 8.13   Mean   :2.3194   Mean   :0.5420  
 3rd Qu.: 9.500   BRSP11C:4:   8   3rd Qu.:12.80   3rd Qu.:3.0000   3rd Qu.:0.6673  
 Max.   :12.000   BRSP11C:5:   8   Max.   :20.90   Max.   :3.3333   Max.   :0.8500  
                  (Other)  :3982                                                    
 DeerFPP13plot   DeerFPP15plot    Lt15CnpyOpen    Lt13CnpyOpen      pHH2013    
 Min.   : 0.00   Min.   :0.000   Min.   : 4.04   Min.   : 5.01   Min.   :5.48  
 1st Qu.: 0.00   1st Qu.:1.000   1st Qu.: 9.81   1st Qu.: 8.79   1st Qu.:6.46  
 Median : 1.00   Median :1.500   Median :13.92   Median :13.73   Median :6.89  
 Mean   : 2.29   Mean   :1.663   Mean   :15.44   Mean   :18.27   Mean   :6.93  
 3rd Qu.: 3.00   3rd Qu.:2.000   3rd Qu.:18.51   3rd Qu.:23.69   3rd Qu.:7.48  
 Max.   :11.00   Max.   :7.000   Max.   :58.81   Max.   :57.38   Max.   :8.17  
                                 NA's   :96                                    
    worm16ct       worm16wt        meanwormct      meanwormwt       PlotMoist     
 Min.   : 0.0   Min.   :0.0000   Min.   : 0.00   Min.   :0.0000   Min.   :0.1206  
 1st Qu.:10.0   1st Qu.:0.2729   1st Qu.:13.00   1st Qu.:0.3246   1st Qu.:0.1622  
 Median :22.0   Median :0.6463   Median :23.33   Median :0.6292   Median :0.1873  
 Mean   :26.5   Mean   :1.1226   Mean   :27.92   Mean   :0.9185   Mean   :0.1948  
 3rd Qu.:37.0   3rd Qu.:1.2940   3rd Qu.:40.00   3rd Qu.:1.0901   3rd Qu.:0.2239  
 Max.   :94.0   Max.   :7.5096   Max.   :85.33   Max.   :3.6966   Max.   :0.2927  
 NA's   :96     NA's   :96                                                        
   ClustMoist         AvgJJA          AvgDJF          TotalBA             FireObsF   
 Min.   :0.1366   Min.   :18.90   Min.   :-9.300   Min.   :0.4269   FireObs   :  96  
 1st Qu.:0.1710   1st Qu.:20.90   1st Qu.:-7.200   1st Qu.:1.1455   NotFireObs:3935  
 Median :0.1883   Median :21.30   Median :-6.600   Median :1.4635                    
 Mean   :0.1966   Mean   :21.28   Mean   :-6.688   Mean   :1.5469                    
 3rd Qu.:0.2190   3rd Qu.:21.80   3rd Qu.:-6.300   3rd Qu.:1.9987                    
 Max.   :0.2735   Max.   :24.50   Max.   :-4.700   Max.   :2.7619                    

   Alive12Sum     Alive12SumF  Alive16JuneF  Alive16June    
 Min.   :0.0000   Alive:3927   Alive:1556   Min.   :0.0000  
 1st Qu.:1.0000   Dead : 104   Dead :2379   1st Qu.:0.0000  
 Median :1.0000                NA's :  96   Median :0.0000  
 Mean   :0.9742                             Mean   :0.3954  
 3rd Qu.:1.0000                             3rd Qu.:1.0000  
 Max.   :1.0000                             Max.   :1.0000  
                                            NA's   :96       

我在平均蚯蚓体重上使用ns样条并分为3个样条。我需要使用哪些代码?我试过使用predict.ns或predict.merMod,但我不知道如何,因为我们不是只寻找整体平均预测值。我们想看一定重量的预测值。我应该尝试什么命令?我该怎么办?

这是我的glmer代码:

```{r}
nsglm<-glmer(Mort16JuneAPF ~ Exclose*Species + ns(meanwormwt, df=3, knots=c(0.3246,1.0901))*Species + (1 | Park) + (1 | Cluster:Park) + (1 | Plot:Cluster:Park) + (1|Exclose:ParkPlot) + (1 | x:Unique), data = mydata, family = binomial, control=glmerControl(optimizer="bobyqa", calc.derivs = FALSE))
summary(nsglm)
```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: Mort16JuneAPF ~ Exclose * Species + ns(meanwormwt, df = 3, knots = c(0.3246,  
    1.0901)) * Species + (1 | Park) + (1 | Cluster:Park) + (1 |  
    Plot:Cluster:Park) + (1 | Exclose:ParkPlot) + (1 | x:Unique)
   Data: mydata
Control: glmerControl(optimizer = "bobyqa", calc.derivs = FALSE)

     AIC      BIC   logLik deviance df.resid 
  4253.3   4410.2  -2101.7   4203.3     3910 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2758 -0.6492  0.2821  0.6346  4.0010 

Random effects:
 Groups            Name        Variance Std.Dev.
 x:Unique          (Intercept) 0.01345  0.1160  
 Exclose:ParkPlot  (Intercept) 0.51799  0.7197  
 Plot:Cluster:Park (Intercept) 0.00000  0.0000  
 Cluster:Park      (Intercept) 0.28753  0.5362  
 Park              (Intercept) 0.03863  0.1965  
Number of obs: 3935, groups:  
x:Unique, 564; Exclose:ParkPlot, 142; Plot:Cluster:Park, 71; Cluster:Park, 24; Park, 6

Fixed effects:
                                                               Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                                      0.6957     0.4435   1.569 0.116746    
ExcloseYes                                                      -2.7133     0.2090 -12.981  < 2e-16 ***
SpeciesQUMA                                                      1.2551     0.3827   3.279 0.001041 ** 
SpeciesRHCA                                                     -0.6303     0.3407  -1.850 0.064331 .  
SpeciesTIAM                                                     -0.5476     0.3500  -1.565 0.117687    
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1               1.2171     0.6496   1.874 0.060986 .  
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2               0.8967     0.9645   0.930 0.352534    
ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3              -0.2013     0.7047  -0.286 0.775132    
ExcloseYes:SpeciesQUMA                                           1.5177     0.2375   6.391 1.65e-10 ***
ExcloseYes:SpeciesRHCA                                           2.2524     0.2138  10.533  < 2e-16 ***
ExcloseYes:SpeciesTIAM                                           1.0164     0.2295   4.430 9.44e-06 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1  -0.3065     0.6130  -0.500 0.617043    
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1  -1.0661     0.5614  -1.899 0.057555 .  
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))1   0.6600     0.6074   1.087 0.277240    
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2  -2.1818     0.8225  -2.653 0.007984 ** 
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2  -1.3299     0.7390  -1.800 0.071897 .  
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))2   3.0146     0.7774   3.878 0.000105 ***
SpeciesQUMA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3  -2.8120     0.5579  -5.041 4.64e-07 ***
SpeciesRHCA:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3  -0.4749     0.5100  -0.931 0.351807    
SpeciesTIAM:ns(meanwormwt, df = 3, knots = c(0.3246, 1.0901))3   2.4477     0.5762   4.248 2.16e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
r predict spline mixed-models
1个回答
1
投票

你需要使用predict()newdata参数。您需要为每个固定效果输入变量指定一些值,例如

nd <- with(mydata,
   expand.grid(Exclose=levels(Exclose), Species=levels(Species))
nd$meanwormwt <- 0.361
predict(nsglm, re.form=~0, newdata=nd)

re.form=~0指定您要进行人口级别预测(即,对于随机效应分组因子的新值/未知值)。

© www.soinside.com 2019 - 2024. All rights reserved.