我很好奇为什么我没有打印任何输出,因为代码没有错误。
import numpy as np
class NN():
def _init_(self):
# Seed random number generator, so it generates the same number
# every time program runs
np.random.seed(1)
# Model single neuron, with 3 input connections and 1 output connection
# Assign random weights to a 3x1 matrix, with values in range -1 to 1
# and mean of 0
self.synaptic_weights = 2 * np.random.random((3, 1)) - 1
# Describes an s shaped curve we pass the weighted sum of the inputs
# through this function to normalise them between 0 and 1
def __sigmoid(self, x):
return 1 / (1 + np.exp(-x))
# Gradient of the sigmoid curve
def __sigmoid_derivative(self, x):
return x * (1 - x)
def train(self, training_set_input, training_set_output, number_of_training_iterations):
for iteration in np.xrange(number_of_training_iterations):
# pass training set through neural net
output = self.predict(training_set_input)
error = training_set_output - output
# multiply error by input and again by the gradient of the sigmoid curve
adjustment = np.dot(training_set_input.T, error * self.__sigmoid_derivative(output))
# Adjust the weights
self.synaptic_weights += adjustment
def predict(self, inputs):
# Pass inputs through neural network (single neuron)
return self.__sigmoid(np.dot(inputs, self.synaptic_weights))
if __name__ == "__NN__":
# init single neuron neural network
nn = NN()
weightz = nn.synaptic_weights
new_predict = nn.predict(np.array[1, 0, 0])
print("Random starting synaptic weights")
print(weightz)
# T flips the matrix vertically
training_set_input = np.array([0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1])
training_set_output = np.array([0, 1, 0, 0]).T
# train network using training set
# do it 10,000 times and make small adjustments each time
nn.train(training_set_input, training_set_output, 10000)
print("New starting synaptic weights")
print(weightz)
# test
print("Predicting")
print(new_predict)
保存文件为 NN.py
显然,
__name__
不等于"__NN__"
。相反,它等于 "__main__"
。
来自文档:
属性必须设置为模块的完全限定名称。该名称用于唯一标识导入系统中的模块。__name__