使用XGBoost H2O的糟糕表现

问题描述 投票:0回答:1

在H2O上使用XGBoost的模型性能非常不同

我正在针对非常不平衡的二进制分类问题使用5倍croos验证来训练XGBoost模型。数据集有1200列(多文档word2vec文档嵌入)。

指定用于训练XGBoost模型的唯一参数是:

  • min_split_improvement = 1e-5
  • seed = 1
  • nfolds = 5

报告的火车数据性能极高(可能过度拟合!!:]:>

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.2814398407936096: 
       A      D    Error    Rate
-----  -----  ---  -------  -------------
A      16858  2    0.0001   (2.0/16860.0)
D      0      414  0        (0.0/414.0)
Total  16858  416  0.0001   (2.0/17274.0)

AUC: 0.9999991404060721

交叉验证数据的性能很差:

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.016815993119962513: 
       A      D    Error    Rate
-----  -----  ---  -------  ----------------
A      16003  857  0.0508   (857.0/16860.0)
D      357    57   0.8623   (357.0/414.0)
Total  16360  914  0.0703   (1214.0/17274.0)

AUC: 0.6015883863129724

我知道H2O交叉验证会使用整个可用数据生成一个额外的模型,并且预期会有不同的性能。但是,可能是导致结果模型性能太差的原因吗?

Ps:具有OMP的多节点H2O群集上的XGBoost

Model Type: classifier
Performance do modelo < XGBoost_model_python_1575650180928_617 >: 

ModelMetricsBinomial: xgboost
** Reported on train data. **

MSE: 0.0008688085383330077
RMSE: 0.029475558320971762
LogLoss: 0.00836528606162877
Mean Per-Class Error: 5.931198102016033e-05
AUC: 0.9999991404060721
pr_auc: 0.9975495622569983
Gini: 0.9999982808121441

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.2814398407936096: 
       A      D    Error    Rate
-----  -----  ---  -------  -------------
A      16858  2    0.0001   (2.0/16860.0)
D      0      414  0        (0.0/414.0)
Total  16858  416  0.0001   (2.0/17274.0)

Maximum Metrics: Maximum metrics at their respective thresholds
metric                       threshold    value     idx
---------------------------  -----------  --------  -----
max f1                       0.28144      0.99759   195
max f2                       0.28144      0.999035  195
max f0point5                 0.553885     0.998053  191
max accuracy                 0.28144      0.999884  195
max precision                0.990297     1         0
max recall                   0.28144      1         195
max specificity              0.990297     1         0
max absolute_mcc             0.28144      0.997534  195
max min_per_class_accuracy   0.28144      0.999881  195
max mean_per_class_accuracy  0.28144      0.999941  195
max tns                      0.990297     16860     0
max fns                      0.990297     413       0
max fps                      0.000111383  16860     399
max tps                      0.28144      414       195
max tnr                      0.990297     1         0
max fnr                      0.990297     0.997585  0
max fpr                      0.000111383  1         399
max tpr                      0.28144      1         195

Gains/Lift Table: Avg response rate:  2.40 %, avg score:  2.42 %
    group    cumulative_data_fraction    lower_threshold    lift     cumulative_lift    response_rate    score        cumulative_response_rate    cumulative_score    capture_rate    cumulative_capture_rate    gain     cumulative_gain
--  -------  --------------------------  -----------------  -------  -----------------  ---------------  -----------  --------------------------  ------------------  --------------  -------------------------  -------  -----------------
    1        0.0100151                   0.873526           41.7246  41.7246            1                0.907782     1                           0.907782            0.417874        0.417874                   4072.46  4072.46
    2        0.0200301                   0.776618           41.7246  41.7246            1                0.834968     1                           0.871375            0.417874        0.835749                   4072.46  4072.46
    3        0.0300452                   0.0326301          16.4004  33.2832            0.393064         0.303206     0.797688                    0.681985            0.164251        1                          1540.04  3228.32
    4        0.0400023                   0.0224876          0        24.9986            0                0.0263919    0.599132                    0.518799            0               1                          -100     2399.86
    5        0.0500174                   0.0180858          0        19.9931            0                0.0201498    0.479167                    0.418953            0               1                          -100     1899.31
    6        0.100035                    0.0107386          0        9.99653            0                0.0136044    0.239583                    0.216279            0               1                          -100     899.653
    7        0.149994                    0.00798337         0        6.66692            0                0.00922284   0.159784                    0.147313            0               1                          -100     566.692
    8        0.200012                    0.00629476         0        4.99971            0                0.00709438   0.119826                    0.112249            0               1                          -100     399.971
    9        0.299988                    0.00436827         0        3.33346            0                0.00522157   0.0798919                   0.0765798           0               1                          -100     233.346
    10       0.400023                    0.00311204         0        2.49986            0                0.00370085   0.0599132                   0.0583548           0               1                          -100     149.986
    11       0.5                         0.00227535         0        2                  0                0.00267196   0.0479333                   0.0472208           0               1                          -100     100
    12       0.599977                    0.00170271         0        1.66673            0                0.00197515   0.039946                    0.0396813           0               1                          -100     66.6731
    13       0.700012                    0.00121528         0        1.42855            0                0.00145049   0.0342375                   0.034218            0               1                          -100     42.8548
    14       0.799988                    0.000837358        0        1.25002            0                0.00102069   0.0299588                   0.0300692           0               1                          -100     25.0018
    15       0.899965                    0.000507632        0        1.11115            0                0.000670878  0.0266306                   0.0268033           0               1                          -100     11.1154
    16       1                           3.35288e-05        0        1                  0                0.00033002   0.0239667                   0.0241551           0               1                          -100     0


Performance da validação cruzada (xval) do modelo < XGBoost_model_python_1575650180928_617 >: 

ModelMetricsBinomial: xgboost
** Reported on cross-validation data. **

MSE: 0.023504756648164406
RMSE: 0.15331261085822134
LogLoss: 0.14134815775808462
Mean Per-Class Error: 0.4160864407653825
AUC: 0.6015883863129724
pr_auc: 0.04991836222189148
Gini: 0.2031767726259448

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.016815993119962513: 
       A      D    Error    Rate
-----  -----  ---  -------  ----------------
A      16003  857  0.0508   (857.0/16860.0)
D      357    57   0.8623   (357.0/414.0)
Total  16360  914  0.0703   (1214.0/17274.0)

Maximum Metrics: Maximum metrics at their respective thresholds
metric                       threshold    value      idx
---------------------------  -----------  ---------  -----
max f1                       0.016816     0.0858434  209
max f2                       0.00409934   0.138433   318
max f0point5                 0.0422254    0.0914205  127
max accuracy                 0.905155     0.976323   3
max precision                0.99221      1          0
max recall                   9.60076e-05  1          399
max specificity              0.99221      1          0
max absolute_mcc             0.825434     0.109684   5
max min_per_class_accuracy   0.00238436   0.572464   345
max mean_per_class_accuracy  0.00262155   0.583914   341
max tns                      0.99221      16860      0
max fns                      0.99221      412        0
max fps                      9.60076e-05  16860      399
max tps                      9.60076e-05  414        399
max tnr                      0.99221      1          0
max fnr                      0.99221      0.995169   0
max fpr                      9.60076e-05  1          399
max tpr                      9.60076e-05  1          399

Gains/Lift Table: Avg response rate:  2.40 %, avg score:  0.54 %
    group    cumulative_data_fraction    lower_threshold    lift      cumulative_lift    response_rate    score        cumulative_response_rate    cumulative_score    capture_rate    cumulative_capture_rate    gain       cumulative_gain
--  -------  --------------------------  -----------------  --------  -----------------  ---------------  -----------  --------------------------  ------------------  --------------  -------------------------  ---------  -----------------
    1        0.0100151                   0.0540408          4.34129   4.34129            0.104046         0.146278     0.104046                    0.146278            0.0434783       0.0434783                  334.129    334.129
    2        0.0200301                   0.033963           2.41183   3.37656            0.0578035        0.0424722    0.0809249                   0.094375            0.0241546       0.0676329                  141.183    237.656
    3        0.0300452                   0.0251807          2.17065   2.97459            0.0520231        0.0292894    0.0712909                   0.0726798           0.0217391       0.089372                   117.065    197.459
    4        0.0400023                   0.02038            2.18327   2.77762            0.0523256        0.0225741    0.0665702                   0.0602078           0.0217391       0.111111                   118.327    177.762
    5        0.0500174                   0.0174157          1.92946   2.60779            0.0462428        0.0188102    0.0625                      0.0519187           0.0193237       0.130435                   92.9463    160.779
    6        0.100035                    0.0103201          1.59365   2.10072            0.0381944        0.0132217    0.0503472                   0.0325702           0.0797101       0.210145                   59.3649    110.072
    7        0.149994                    0.00742152         1.06366   1.7553             0.0254925        0.00867473   0.0420687                   0.0246112           0.0531401       0.263285                   6.3664     75.5301
    8        0.200012                    0.00560037         1.11073   1.59411            0.0266204        0.00642966   0.0382055                   0.0200645           0.0555556       0.318841                   11.0725    59.4111
    9        0.299988                    0.00366149         1.30465   1.49764            0.0312681        0.00452583   0.0358935                   0.0148859           0.130435        0.449275                   30.465     49.7642
    10       0.400023                    0.00259159         1.13487   1.40692            0.0271991        0.00306994   0.0337192                   0.0119311           0.113527        0.562802                   13.4872    40.6923
    11       0.5                         0.00189            0.579844  1.24155            0.0138969        0.00220612   0.0297557                   0.00998654          0.057971        0.620773                   -42.0156   24.1546
    12       0.599977                    0.00136983         0.990568  1.19972            0.0237406        0.00161888   0.0287534                   0.0085922           0.0990338       0.719807                   -0.943246  19.9724
    13       0.700012                    0.000980029        0.676094  1.1249             0.0162037        0.00116698   0.02696                     0.0075311           0.0676329       0.78744                    -32.3906   12.4895
    14       0.799988                    0.00067366         0.797286  1.08395            0.0191083        0.000820365  0.0259787                   0.00669244          0.0797101       0.86715                    -20.2714   8.39529
    15       0.899965                    0.000409521        0.797286  1.05211            0.0191083        0.000540092  0.0252155                   0.00600898          0.0797101       0.94686                    -20.2714   5.21072
    16       1                           2.55768e-05        0.531216  1                  0.0127315        0.000264023  0.0239667                   0.00543429          0.0531401       1                          -46.8784   0

使用H2O上的XGBoost实现的模型性能非常不同,我正在针对非常不平衡的二进制分类问题使用5倍croos验证来训练XGBoost模型。数据集有1200列(...

machine-learning cross-validation h2o xgboost
1个回答
0
投票

对于非交叉验证的情况,请尝试将您的数据预先分成训练和验证框架。

© www.soinside.com 2019 - 2024. All rights reserved.