我有一个(不可逆)函数 ak([u,v,w]) 这取单位八面体表面上的一个点(p:使得 |u|+|v|+|w| = 1)并返回单位球体表面上的一个点。该功能并不完美,但目的是保持点之间的距离真实。
我正在考虑使用 scipy minus 来提供数值逆,但我无法理解它。
输入:球形 pt [x,y,z], 输出八面体点 [u,v,w] 使得 ak([u,v,w])=[x,y,z]
有什么提示吗?
我设法解决了这个问题,但我真的对一般正八面体<=>球体映射问题的替代解决方案感兴趣。
这是我的答案,包括
ak
功能。
import numpy as np
from scipy.optimize import minimize
def xyz_ll(spt):
x, y, z = spt[:, 0], spt[:, 1], spt[:, 2]
lat = np.degrees(np.arctan2(z, np.sqrt(x**2. + y**2.)))
lon = np.degrees(np.arctan2(y, x))
return np.stack([lat, lon], axis=1)
def ll_xyz(ll): # convert to radians.
phi, theta = np.radians(ll[:, 0]), np.radians(ll[:, 1])
x = np.cos(phi) * np.cos(theta)
y = np.cos(phi) * np.sin(theta)
z = np.sin(phi) # z is 'up'
return np.stack([x, y, z], axis=1)
def ak(p):
# Convert point on octahedron onto the sphere.
# Credit to Anders Kaseorg: https://math.stackexchange.com/questions/5016695/
# input: oct_pt is a Euclidean point on the surface of a unit octagon.
# output: UVW on a unit sphere.
a = 3.227806237143884260376580641604959964752197265625 # 𝛂 - vis. Kaseorg.
p1 = (np.pi * p) / 2.0
tp1 = np.tan(p1)
xu, xv, xw = tp1[0], tp1[1], tp1[2]
u2, v2, w2 = xu ** 2, xv ** 2, xw ** 2
y0p = xu * (v2 + w2 + a * w2 * v2) ** 0.25
y1p = xv * (u2 + w2 + a * u2 * w2) ** 0.25
y2p = xw * (u2 + v2 + a * u2 * v2) ** 0.25
pv = np.array([y0p, y1p, y2p])
return pv / np.linalg.norm(pv, keepdims=True)
def fn(op, tx): # octa_point, target_sphere_point
return np.sum((ak(op) - tx) ** 2.)
def constraint(op): # Constraint: |u|+|v|+|w|=1 (surface of the unit octahedron)
return np.sum(np.abs(op)) - 1
# Inverse function using numerical optimization
def inverse_ak(tsp):
initial_guess = np.sign(tsp) * [0.5, 0.5, 0.5] # the centre of the current side
constraints = {'type': 'eq', 'fun': constraint}
result = minimize( # maxiter a bit ott maybe, but works.
fn, initial_guess, args=(tsp,), constraints=constraints,
bounds=[(-1., 1.), (-1., 1.), (-1., 1.)], method='SLSQP',
options={'maxiter': 1000, 'ftol': 1e-20, 'disp': False}
)
if result.success:
return result.x
else:
return None
if __name__ == '__main__':
et = np.array([[48.85837183409, 2.294492063847]]) # in the city of lights.
sph = ll_xyz(et)
octal = inverse_ak(sph[0])
spherical = ak(octal)
rx = xyz_ll(np.array([spherical]))
print(f'Original Pt:{et},\nVia inverse:{rx},\n Difference:{rx-et}') # within a few metres.
输出...
Original Pt:[[48.85837183 2.29449206]],
Via inverse:[[48.85837185 2.29449121]],
Difference:[[ 1.89213694e-08 -8.54396489e-07]]