整合数值/物理数据以进行 CNN 图像分类

问题描述 投票:0回答:1

我正在尝试使用 CNN 使用 keras 对 python 中的医学图像进行分类。这些医学图像还包括可以影响模型决策的文本信息,例如年龄和性别。如何训练一个可以同时使用图像和现实世界信息进行训练的 CNN,以便它可以作为两者的分类基础?

python tensorflow machine-learning keras conv-neural-network
1个回答
1
投票

我能想到几种可能性,但最简单的是用 CNN 从医学图像中提取一些特征,然后压平 CNN 的结果,并连接非图像数据。假设您有 512x512 图像和 10 个类,这是一个想法。这是函数式 API,允许您有多个输入。

import tensorflow as tf
import numpy as np

num_classes = 10

H,W = 512, 512
# Define inputs with their shapes
imgs = tf.keras.Input((H,W,3), dtype = tf.float32)
genders = tf.keras.Input(1, dtype = tf.float32)
ages = tf.keras.Input(1, dtype = tf.float32)

# Extract image features
features = tf.keras.layers.Conv2D(64, 4, strides = 4, activation = 'relu')(imgs)
features = tf.keras.layers.MaxPooling2D()(features)
features = tf.keras.layers.Conv2D(128,3, strides = 2, activation = 'relu')(features)
features = tf.keras.layers.MaxPooling2D()(features)
features = tf.keras.layers.Conv2D(256, 3, strides = 2, activation = 'relu')(features)
features = tf.keras.layers.Conv2D(512, 3, strides = 2, activation = 'relu')(features)

# #Flatten output
flat_features = tf.keras.layers.Flatten()(features)

#Concatenate gender and age
flat_features = tf.concat([flat_features, genders, ages], -1)

# Downsample
xx = tf.keras.layers.Dense(2048, activation = 'relu')(flat_features)
xx = tf.keras.layers.Dense(1024, activation = 'relu')(xx)
xx = tf.keras.layers.Dense(512, activation = 'relu')(xx)

#Calculate probabilities for each class
logits = tf.keras.layers.Dense(num_classes)(xx)
probs = tf.keras.layers.Softmax()(logits)

model = tf.keras.Model(inputs = [imgs, genders, ages], outputs = probs)

model.summary()

此架构并不是特别标准,您可能希望使解码器更深和/或减少 CNN 编码器中的参数数量。

© www.soinside.com 2019 - 2024. All rights reserved.