我有10000个数据,每个数据都有0和1的标签。我想使用LSTM进行分类,因为这是时间序列数据。
input_dim = 1
hidden_dim = 32
num_layers = 2
output_dim = 1
# Here we define our model as a class
class LSTM(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
super(LSTM, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
#Initialize hidden layer and cell state
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_()
# We need to detach as we are doing truncated backpropagation through time (BPTT)
# If we don't, we'll backprop all the way to the start even after going through another batch
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
# Index hidden state of last time step
# out.size() --> 100, 32, 100
# out[:, -1, :] --> 100, 100 --> just want last time step hidden states!
out = self.fc(out[:, -1, :])
# For binomial Classification
m = torch.sigmoid(out)
return m
model = LSTM(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, num_layers=num_layers)
loss = nn.BCELoss()
optimiser = torch.optim.Adam(model.parameters(), lr=0.00001, weight_decay=0.00006)
num_epochs = 100
# Number of steps to unroll
seq_dim =look_back-1
for t in range(num_epochs):
y_train_class = model(x_train)
output = loss(y_train_class, y_train)
# Zero out gradient, else they will accumulate between epochs
optimiser.zero_grad(set_to_none=True)
# Backward pass
output.backward()
# Update parameters
optimiser.step()
此代码最初来自kaggle,我对其进行了编辑以进行分类。拜托,你能告诉我我做错了什么吗?
编辑1: 添加数据加载器 从 torch.utils.data 导入 DataLoader 从 torch.utils.data 导入 TensorDataset
x_train = torch.from_numpy(x_train).type(torch.Tensor)
y_train = torch.from_numpy(y_train).type(torch.Tensor)
x_test = torch.from_numpy(x_test).type(torch.Tensor)
y_test = torch.from_numpy(y_test).type(torch.Tensor)
train_dataloader = DataLoader(TensorDataset(x_train, y_train), batch_size=128, shuffle=True)
test_dataloader = DataLoader(TensorDataset(x_test, y_test), batch_size=128, shuffle=True)
我意识到在检查结果之前我忘记了反转变换。当我这样做时,我从分类中得到了不同的值,但是所有值的范围都是 0.001-0.009,所以当我对它们进行舍入时,结果是相同的。所有分类都标记为 0。
神经网络训练中的一个常见现象是,它们最初会收敛到一个非常简单的问题解决方案,即输出一个恒定的预测,以最小化训练数据的误差。我的猜测是,在您的训练数据中,
0
和1
类别之间的比率接近于0.5423
。根据您的模型是否具有足够的复杂性,当给予更多学习步骤时,它可能会学会根据输入做出更具体的预测。
虽然增加纪元数量可能会有所帮助,但您可以对当前的设置做一些更好的事情。目前,您每个周期仅执行一个优化器步骤。通常,您需要每批次一个步骤,并以(小)批次(例如 32 个输入)循环处理数据。为此,最好使用DataLoader,您可以在其中定义批量大小,并在纪元循环内循环数据加载器,类似于此示例。