我正在尝试创建一个RNN,以从莎士比亚的文学作品中生成文本,如本张量流课程所教导:https://www.tensorflow.org/tutorials/text/text_generation
[当我尝试加载权重时,我的程序将崩溃并显示错误消息:AttributeError:'NoneType'对象没有属性'endswith']
这里是使程序崩溃的代码行:
model.load_weights(tf.train.latest_checkpoint(check_dir))
这里是我的代码的粘贴框:https://pastebin.com/KqmD0phL
这里是完整的错误消息:
Traceback (most recent call last):
File "D:/Python/PycharmProjects/untitled/Shakespeare.py", line 118, in <module>
main()
File "D:/Python/PycharmProjects/untitled/Shakespeare.py", line 108, in main
model.load_weights(tf.train.latest_checkpoint(check_dir))
File "C:\Users\marco\venv\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 182, in load_weights
return super(Model, self).load_weights(filepath, by_name)
File "C:\Users\marco\venv\lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 1335, in load_weights
if _is_hdf5_filepath(filepath):
File "C:\Users\marco\venv\lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 1645, in _is_hdf5_filepath
return (filepath.endswith('.h5') or filepath.endswith('.keras') or
AttributeError: 'NoneType' object has no attribute 'endswith'
我在其他教程中也遇到了同样的问题。据我所知,Tensorflow特定调用与Tensorflow.Keras调用之间似乎存在差异。
我在另一篇文章中提到有关使用Keras API保存并使用Keras API加载的内容,这对我来说很有意义。
我希望这会有所帮助。
我用过:
callbacks = [
tf.keras.callbacks.TensorBoard(log_dir='.'+os.sep+'logs',
histogram_freq=0,
embeddings_freq=0,
update_freq='epoch',
profile_batch=0),
#added this (which doesn't profile) to get the example to to work
#When saving a model's weights, tf.keras defaults to the checkpoint format.
#Pass save_format='h5' to use HDF5 (or pass a filename that ends in .h5).
tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
#save_weights_only=True,
verbose=1),
PrintLR()
]
然后显式加载模型:
#tutorials indicates to save weights only but I found this to be a problem / concern between
#tensorflow and keras calls, so save the whole model (who cares anyway)
#model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
#load the specific model name
model=tf.keras.models.load_model(checkpoint_dir+os.sep+'ckpt_12.h5')
eval_loss, eval_acc = model.evaluate(eval_dataset)
print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))