当我运行我的对象检测模型时,屏幕上显示以下类型错误:
TypeError Traceback (most recent call last)
\<ipython-input-26-f5bf27ce595e\> in \<module\>
1 # Load pipeline config and build a detection model
2 configs = config_util.get_configs_from_pipeline_file(CONFIG_PATH)
\----\> 3 detection_model = model_builder.build(model_config=configs\['model'\], is_training=False)
4
5 # Restore checkpoint
\~\\AppData\\Roaming\\Python\\Python37\\site-packages\\object_detection\\builders\\model_builder.py in build(model_config, is_training, add_summaries)
125 meta_architecture = model_config.WhichOneof('model')
126 if meta_architecture == 'ssd':
\--\> 127 return \_build_ssd_model(model_config.ssd, is_training, add_summaries)
128 if meta_architecture == 'faster_rcnn':
129 return \_build_faster_rcnn_model(model_config.faster_rcnn, is_training,
\~\\AppData\\Roaming\\Python\\Python37\\site-packages\\object_detection\\builders\\model_builder.py in \_build_ssd_model(ssd_config, is_training, add_summaries)
248 feature_extractor_config=ssd_config.feature_extractor,
249 freeze_batchnorm=ssd_config.freeze_batchnorm,
\--\> 250 is_training=is_training)
251
252 box_coder = box_coder_builder.build(ssd_config.box_coder)
\~\\AppData\\Roaming\\Python\\Python37\\site-packages\\object_detection\\builders\\model_builder.py in \_build_ssd_feature_extractor(feature_extractor_config, is_training, freeze_batchnorm, reuse_weights)
224 })
225
\--\> 226 return feature_extractor_class(\*\*kwargs)
227
228
TypeError: __init__() got an unexpected keyword argument 'fpn_min_level'
我已尝试搜索以修复此错误,但仍然无法找到相关信息。
这是我遇到错误的代码部分:
configs = config_util.get_configs_from_pipeline_file(CONFIG_PATH)
detection_model = model_builder.build(model_config=configs\['model'\], is_training=False)
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(CHECKPOINT_PATH, 'ckpt-6')).expect_partial()
@tf.function
def detect_fn(image):
image, shapes = detection_model.preprocess(image)
prediction_dict = detection_model.predict(image, shapes)
detections = detection_model.postprocess(prediction_dict, shapes)
返回检测