在 pytorch 中初始化模型时出现问题

问题描述 投票:0回答:2

我无法在 pytorch 中初始化我的模型并获取:

TypeError                                 Traceback (most recent call last)
<ipython-input-82-9bfee30a439d> in <module>()
288 dataset = News_Dataset(true_path=args.true_news_file, 
                            fake_path=args.fake_news_file, 
289                         embeddings_path=args.embeddings_file)
 --> 290 classifier = News_classifier_resnet_based().cuda()
291 try:
292   classifier.load_state_dict(torch.load(args.model_state_file))

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in 
__call__(self, *input, **kwargs)
548             result = self._slow_forward(*input, **kwargs)
549         else:
--> 550             result = self.forward(*input, **kwargs)
551         for hook in self._forward_hooks.values():
552             hook_result = hook(self, input, result)

TypeError: forward() missing 1 required positional argument: 'input'

这是我的代码:

class News_classifier_resnet_based(torch.nn.Module):
    def __init__(self):
        super().__init__()

        self.activation = torch.nn.ReLU6()
        self.sigmoid = torch.nn.Sigmoid()

        self.positional_encodings = PositionalEncoder()

        self.resnet = list(torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).children())

        self.to_appropriate_shape = torch.nn.Conv2d(in_channels=1, out_channels=1, kernel_size=77)

        self.conv1 = torch.nn.Conv2d(in_channels=1,out_channels=64,kernel_size=7,stride=2,padding=3)
        self.conv1.weight = torch.nn.Parameter(self.resnet[0].weight[:,0,:,:].data)
        self.center = torch.nn.Sequential(*self.resnet[1:-2])
        self.conv2 = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1)
        self.conv3 = torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=7)

        self.title_conv = torch.nn.Sequential(
                    torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=3),
                    self.activation(),
                    torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2),
                    self.activation(),
                    torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2)
                )
       self.title_lin = torch.nn.Linear(25,1)

       self.year_lin = torch.nn.Linear(10,1)
       self.month_lin = torch.nn.Linear(12,1)
       self.day_lin = torch.nn.Linear(31,1)
       self.date_lin = torch.nn.Linear(3,1)

       self.final_lin = torch.nn.Linear(3,1)

   def forward(self,x_in):
       #input shape - (batch_size, 3+title_len+seq_len, embedding_dim)
       #output shape - (batch_size, 1)
       year = x_in[:,0,:10]
       month = x_in[:,1,:12]
       day = x_in[:,2,:31]

       title = x_in[:,3:3+args.title_len,:]
       text = x_in[:,3+args.title_len:,:]
       title = self.positional_encodings(title)
       text = self.positional_encodings(text)

       text = text.unsqueeze(1)
       text = self.activation(self.to_appropriate_shape(text))
       text = self.activation(self.conv1(text))
       text = self.activation(self.center(text))
       text = self.activation(self.conv2(text))
       text = self.activation(self.conv3(text))
       text = text.reshape(args.batch_size,-1)

       title = title.unsqueeze(1)
       title = self.activation(self.title_conv(title))
       title = title.reshape(args.batch_size,-1)
       title = self.activation(self.title_lin(title))

       year = self.activation(self.year_lin(year))
       month = self.activation(self.month_lin(month))
       day = self.activation(self.day_lin(day))
       date = torch.cat([year,month,day], dim=-1)
       date = self.activation(self.date_lin(date))

       final = torch.cat([date,title,text], dim=-1)
       final = self.sigmoid(self.final_lin(final))

       return final

classifier = News_classifier_resnet_based().cuda()

我该怎么办?我正在尝试使用词嵌入对文本进行分类,但问题出在最后一行。我在谷歌合作实验室工作。另外,当我在其他代码块中创建一些模型时,我没有遇到任何问题。

python python-3.x machine-learning neural-network pytorch
2个回答
2
投票

问题出在你的

init
函数上。当您创建
title_conv
时,而不是传递先前创建的激活对象,您将在不带参数的情况下调用激活。您可以通过更改这部分代码来修复它:

self.title_conv = torch.nn.Sequential(
                    torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=3),
                    self.activation, # Notice I have removed ()
                    torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2),
                    self.activation, # Notice I have removed ()
                    torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2)
                )

0
投票

如果通过以下任一方式更改

self.title_conv
,则不会出现该错误。

self.title_conv = torch.nn.Sequential(
                torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=3),
                torch.nn.ReLU6(),
                torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2),
                torch.nn.ReLU6(),
                torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2)
            )

或如:

self.title_conv = torch.nn.Sequential(
                torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=3,stride=3),
                self.activation,
                torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2),
                self.activation,
                torch.nn.Conv2d(in_channels=1,out_channels=1,kernel_size=2,stride=2)
            )

我不确定原因。我认为这可能是因为

self.activation
是一个函数,并且通过将其写为
self.activation()
来再次进行调用。

© www.soinside.com 2019 - 2024. All rights reserved.