请告诉我有什么问题以及如何纠正。
data = open(r"C:\Users\HS\Desktop\WORK\R\R DATA\g textonly2.txt").read()
labels, texts = [], []
#print(data)
for i, line in enumerate(data.split("\n")):
content = line.split()
#print(content)
if len(content) is not 0:
labels.append(content[0])
texts.append(content[1:])
# create a dataframe using texts and lables
trainDF = pandas.DataFrame()
trainDF['text'] = texts
trainDF['label'] = labels
# split the dataset into training and validation datasets
train_x, valid_x, train_y, valid_y = model_selection.train_test_split(trainDF['text'], trainDF['label'])
# label encode the target variable
encoder = preprocessing.LabelEncoder()
train_y = encoder.fit_transform(train_y)
valid_y = encoder.fit_transform(valid_y)
# create a count vectorizer object
count_vect = CountVectorizer(analyzer='word', token_pattern=r'\w{1,}')
count_vect.fit(trainDF['text'])
数据文件包含如下数据:
0 #\xdaltimahora Es tracta d'un aparell de Germanwings amb 152 passatgers a bord
0 Route map now being shared by http:
0 Pray for #4U9525 http:
0 Airbus A320 #4U9525 crash: \nFlight tracking data here: \nhttp
错误:
Traceback:
"C:\Program Files\Python36\python.exe" "C:/Users/HS/PycharmProjects/R/C/Text classification1.py"
Using TensorFlow backend.
Traceback (most recent call last):
File "C:/Users/HS/PycharmProjects/R/C/Text classification1.py", line 38, in <module>
count_vect.fit(trainDF['text'])
File "C:\Program Files\Python36\lib\site-packages\sklearn\feature_extraction\text.py", line 836, in fit
self.fit_transform(raw_documents)
File "C:\Program Files\Python36\lib\site-packages\sklearn\feature_extraction\text.py", line 869, in fit_transform
self.fixed_vocabulary_)
File "C:\Program Files\Python36\lib\site-packages\sklearn\feature_extraction\text.py", line 792, in _count_vocab
for feature in analyze(doc):
File "C:\Program Files\Python36\lib\site-packages\sklearn\feature_extraction\text.py", line 266, in <lambda>
tokenize(preprocess(self.decode(doc))), stop_words)
File "C:\Program Files\Python36\lib\site-packages\sklearn\feature_extraction\text.py", line 232, in <lambda>
return lambda x: strip_accents(x.lower())
AttributeError: 'list' object has no attribute 'lower'
Process finished with exit code 1
fit(raw_documents,y = None)[source]学习原始文档中所有标记的词汇表。
参数:raw_documents:iterable
可迭代产生str,unicode或文件对象。
返回:self:
你得到错误AttributeError: 'list' object has no attribute 'lower'
,因为你给它一个可迭代的(在这种情况下是pd.Series
)列表对象,而不是可迭代的字符串。
你应该能够通过使用texts.append(' '.join(content[1:]))
而不是texts.append(content[1:])
解决这个问题:
for i, line in enumerate(data.split("\n")):
content = line.split()
#print(content)
if len(content) is not 0:
labels.append(content[0])
#texts.append(content[1:])
texts.append(' '.join(content[1:]))