我不断修改数据加载器端,但它仍然显示该错误。
这是预处理代码:
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
class ImageDataset(Dataset):
def __init__(self, images, labels, transform=None, target_transform=None):
self.images = images
self.labels = labels
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
label = self.labels[idx]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
# resize the data
resize_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# using Data Loader, is a function that wraps the Dataset and outputs each data using a mini-batch.
train_dataset = ImageDataset(images=x, labels=y, transform=resize_transform)
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# print each data (x test and y test in dataloader)
for images, labels in train_dataloader:
print(images.shape)
print(labels.shape)
break
这是型号:
val_dataset = ImageDataset(x_val, y_val, transform=resize_transform)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Network(nn.Module):
def __init__(self):
super(Network, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3)
self.conv2 = nn.Conv2d(32, 64, 3)
self.fc1 = nn.Linear(64 * 16 * 16, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 16) # Adjusted for 16 classes
self.pool = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 16 * 16) # Flatten layer
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Define the loss function and optimizer
net = Network()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Training the model
num_epochs = 10
for epoch in range(num_epochs):
net.train()
running_loss = 0.0
for i, data in enumerate(train_dataloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {running_loss / len(train_dataloader):.4f}")
# Validation accuracy
net.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f"Validation Accuracy: {accuracy:.2f}%")
print("Finished Training")
asdfefeffffffffffffffffffffdsfasfaferwgaergegreagafdgfdgregergagre grarereberba
上面提到的错误不断出现:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[11], line 42
40 optimizer.zero_grad()
41 outputs = net(inputs)
---> 42 loss = criterion(outputs, labels)
43 loss.backward()
44 optimizer.step()
File ~\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1736, in Module._wrapped_call_impl(self, *args, **kwargs)
1734 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1735 else:
-> 1736 return self._call_impl(*args, **kwargs)
File ~\anaconda3\Lib\site-packages\torch\nn\modules\module.py:1747, in Module._call_impl(self, *args, **kwargs)
1742 # If we don't have any hooks, we want to skip the rest of the logic in
1743 # this function, and just call forward.
1744 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1745 or _global_backward_pre_hooks or _global_backward_hooks
1746 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1747 return forward_call(*args, **kwargs)
1749 result = None
1750 called_always_called_hooks = set()
File ~\anaconda3\Lib\site-packages\torch\nn\modules\loss.py:1293, in CrossEntropyLoss.forward(self, input, target)
1292 def forward(self, input: Tensor, target: Tensor) -> Tensor:
-> 1293 return F.cross_entropy(
1294 input,
1295 target,
1296 weight=self.weight,
1297 ignore_index=self.ignore_index,
1298 reduction=self.reduction,
1299 label_smoothing=self.label_smoothing,
1300 )
File ~\anaconda3\Lib\site-packages\torch\nn\functional.py:3479, in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction, label_smoothing)
3477 if size_average is not None or reduce is not None:
3478 reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 3479 return torch._C._nn.cross_entropy_loss(
3480 input,
3481 target,
3482 weight,
3483 _Reduction.get_enum(reduction),
3484 ignore_index,
3485 label_smoothing,
3486 )
ValueError: Expected input batch_size (49) to match target batch_size (64).
这里有什么问题以及如何解决?
我尝试修改数据加载器
我相信您的问题可能是由于最后一批的样本数少于指定的批次大小(
64
)而引起的,因为样本总数不能被64
整除。你可能需要做这样的事情:
train_dataloader = DataLoader(
train_dataset,
batch_size=64,
shuffle=True,
drop_last=True # This prevents the last incomplete batch
)
请参阅官方文档了解更多详细信息。