我想知道为什么从线性混合效应模型计算95个%置信带时做GGPLOT2产生比当手动计算,例如较窄的频带通过这里confidence intervals on predictions以下奔Bolker的方法。也就是说,GGPLOT2给模型的不准确表示?
下面是使用sleepstudy数据集(修改,以在结构上类似于我工作的一个DF)重复的例子:
data("sleepstudy") # load dataset
height <- seq(165, 185, length.out = 18) # create vector called height
Treatment <- rep(c("Control", "Drug"), 9) # create vector called treatment
Subject <- levels(sleepstudy$Subject) # get vector of Subject
ht.subject <- data.frame(height, Subject, Treatment)
sleepstudy <- dplyr::left_join(sleepstudy, ht.subject, by="Subject") # Append df so that each subject has its own height and treatment
sleepstudy$Treatment <- as.factor(sleepstudy$Treatment)
生成模型,预测添加到原来的DF和情节
m.sleep <- lmer(Reaction ~ Treatment*height + (1 + Days|Subject), data=sleepstudy)
sleepstudy$pred <- predict(m.sleep)
ggplot(sleepstudy, aes(height, pred, col=Treatment)) + geom_smooth(method="lm")[2]
以下计算方法Bolker置信区间
newdf <- expand.grid(height=seq(165, 185, 1),
Treatment=c("Control","Drug"))
newdf$Reaction <- predict(m.sleep, newdf, re.form=NA)
modmat <- model.matrix(terms(m.sleep), newdf)
pvar1 <- diag(modmat %*% tcrossprod(vcov(m.sleep), modmat))
tvar1 <- pvar1+VarCorr(m.sleep)$Subject[1]
cmult <- 1.96
newdf <- data.frame(newdf
,plo = newdf$Reaction-cmult*sqrt(pvar1)
,phi = newdf$Reaction+cmult*sqrt(pvar1)
,tlo = newdf$Reaction-cmult*sqrt(tvar1)
,thi = newdf$Reaction+cmult*sqrt(tvar1))
# plot confidence intervals
ggplot(newdf, aes(x=height, y=Reaction, colour=Treatment)) +
geom_point() +
geom_ribbon(aes(ymin=plo, ymax=phi, fill=Treatment), alpha=0.4)[2]
有了一些调整,这似乎是一致的。置信区间确实较大,但不是巨大的大得多。请记住,ggplot是装修一个非常不同的模式;它通过治疗是拟合单独的线性(未线性混合)模型,忽略(1)的重复测量,(2)天的效果。
这似乎不可思议,以配合随机斜坡的模型,但没有群体水平的斜率(e.g.see here),所以我加Days
的固定效果:
m.sleep <- lmer(Reaction ~ Treatment*height + Days +
(1 + Days|Subject),
data=sleepstudy)
我重组了绘图代码一点点:
theme_set(theme_bw())
gg0 <- ggplot(sleepstudy, aes(height, colour=Treatment)) +
geom_point(aes(y=Reaction))+
geom_smooth(aes(y=pred), method="lm")
lm()
/ ggplot2
做比较的),那么你可能不应该添加到VarCorr(m.sleep)$Subject[1]
方差(从tvar1
的FAQ example变量是创建预测区间而非置信区间... )Days
在上述模型中,我添加mean(sleepstudy$Days)
到预测数据帧。newdf <- expand.grid(height=seq(165, 185, 1),
Treatment=c("Control","Drug"),
Days=mean(sleepstudy$Days))
newdf$Reaction <- newdf$pred <- predict(m.sleep, newdf, re.form=NA)
modmat <- model.matrix(terms(m.sleep), newdf)
pvar1 <- diag(modmat %*% tcrossprod(vcov(m.sleep), modmat))
tvar1 <- pvar1
cmult <- 1.96
newdf <- data.frame(newdf
,plo = newdf$Reaction-cmult*sqrt(pvar1)
,phi = newdf$Reaction+cmult*sqrt(pvar1)
,tlo = newdf$Reaction-cmult*sqrt(tvar1)
,thi = newdf$Reaction+cmult*sqrt(tvar1))
gg0 +
geom_point(data=newdf,aes(y=Reaction)) +
geom_ribbon(data=newdf,
aes(ymin=plo, ymax=phi, fill=Treatment), alpha=0.4,
colour=NA)
与所估计斜率和标准误差比较:
m0 <- lm(Reaction~height*Treatment,sleepstudy)
ff <- function(m) {
print(coef(summary(m))[-1,c("Estimate","Std. Error")],digits=2)
}
> ff(m0)
## Estimate Std. Error
## height -0.3 0.94
## TreatmentDrug -602.2 234.01
## height:TreatmentDrug 3.5 1.34
ff(m.sleep)
## Estimate Std. Error
## TreatmentDrug -55.03 425.3
## height 0.41 1.7
## Days 10.47 1.5
## TreatmentDrug:height 0.33 2.4
这看起来一致/有关的权利:混合模式是给较大的标准误斜率与高度,高度:治疗作用。 (TreatmentDrug
的主要影响看疯了,因为他们的治疗在height==0
预期的效果...)
作为一个交叉检查,我可以从sjPlot::plot_model()
类似的答案...
library(sjPlot)
plot_model(m.sleep, type="pred", terms=c("height","Treatment"))