我正在尝试使用如下所示的Spark DataFrame训练XgBoost模型:
+--------------------+-------------------+
| features| TARGET_VAL|
+--------------------+-------------------+
|(122,[0,1,9,10,11...| 0.0|
|(122,[0,1,8,9,11,...| 14.577420000000002|
|[4.0,1.0,0.0,0.0,...| 65.44524|
|(122,[0,1,8,9,11,...| 0.0|
|(122,[0,1,8,9,10,...| 18.27017|
|(122,[0,1,8,11,12...| 0.0|
|(122,[0,1,8,10,11...| 75.75954|
|(122,[0,1,10,11,1...| 65.32013|
|[1.0,0.0,1.0,0.0,...| 171.16563|
|(122,[0,1,8,11,12...| 0.0|
|(122,[0,1,8,9,11,...| 0.0|
|(122,[0,1,8,10,11...| 2.27041|
|(122,[0,1,11,12,2...| 0.0|
|[4.0,1.0,0.0,0.0,...| 76.08024|
|(122,[0,1,8,9,11,...| 0.0|
|(122,[0,1,8,10,11...| 15.31895|
|(122,[0,1,8,10,11...| 122.56702|
|(122,[0,1,8,10,11...|-30.268179999999997|
|(122,[0,1,8,10,11...| 0.0|
|(122,[0,1,10,11,4...| 136.80025|
+--------------------+-------------------+
[我正在使用sparkxgb(带有PySpark的XgBoost),并且正在像这样训练模型:
paramMap = {'eta': 0.1, 'subsample': 0.8}
xgbClassifier = XGBoostClassifier(**paramMap) \
.setFeaturesCol("features") \
.setLabelCol("TARGET_VAL")
[当我使用:训练模型时
xgboostModel = xgbClassifier.fit(df)
我收到以下错误:
java.lang.IllegalArgumentException: requirement failed: Classifier found max label value = 23470.00821 but requires integers in range [0, ... 2147483647)
因此,我将TARGET_VAL列转换为int并在执行此操作时收到以下错误:
java.lang.IllegalArgumentException: requirement failed: Classifier inferred 23471 from label values in column XGBoostClassifier_37d67e9f2233__labelCol, but this exceeded the max numClasses (100) allowed to be inferred from values. To avoid this error for labels with > 100 classes, specify numClasses explicitly in the metadata; this can be done by applying StringIndexer to the label column.
我是XgBoost和机器学习的新手。我认为TARGET_VAL是训练后的模型将为测试数据集预测的列,并且应该是浮点值。那么,我在做什么错呢?我需要使用不同的参数配置模型吗?
这里的问题是,由于TARGET_VAL
是连续变量列,并且XGBoostClassifier
需要离散/类别变量列。分类器的类太多了。正如您在错误中看到的,最大numClasses
为100,我确定您有100个以上的数字。
您正在使用分类算法来解决回归问题。