PyTorch是一个深度学习框架,它实现了一个动态计算图,它允许您改变神经网络在运行中的行为方式,并能够执行向后自动区分。
公路我有一个网络创建的网络如下: p = torch.nn.Sequeential(torch.nn.linear(self.inputsize,self.outputsize))) 我知道我可以通过以下方式打印网络: 打印(P) 并得到: 顺序( (0):...
HeteroData( user={ x=[100, 16] }, keyword={ x=[321, 16] }, tweet={ x=[1000, 16] }, (user, follow, user)={ edge_index=[2, 291] }, (user, tweetedby, tweet)={ edge_index=[2, 1000] }, (keyword, haskeyword, tweet)={ edge_index=[2, 3752] } )
oserror:[WinError 127]找不到指定的程序
导入火炬(导入火炬),我面临以下错误消息: Oserror:[Winerror 127]找不到指定的程序。错误加载“ c:\ users \ myusername naconda3 \ li ...
在QWEN2.5-CODER-1.5B的SFT培训期间:“张量的元素0不需要毕业,并且没有grad_fn”具有grad_fn`fn`fn`Fn`
BELOW是我的代码的简化版本和相应的日志输出:
import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig ) # 1) Adjust these as needed model_name = "meta-llama/Llama-3.1-8B" prompt = "Hello from Llama 3.1! Tell me something interesting." dtype = torch.float16 # or torch.float32 if needed # 2) Get the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Prepare input inputs = tokenizer(prompt, return_tensors="pt").to("cuda") ############################################ # A) Load with AutoModelForCausalLM ############################################ print("=== Loading with AutoModelForCausalLM ===") model_auto = AutoModelForCausalLM.from_pretrained( model_name, attn_implementation="eager", # matches your usage torch_dtype=dtype ).cuda() model_auto.eval() # turn off dropout config = model_auto.config with torch.no_grad(): out_auto = model_auto(**inputs) logits_auto = out_auto.logits # shape: [batch_size, seq_len, vocab_size] del model_auto torch.cuda.empty_cache() ############################################ # B) Load with LlamaForCausalLM + config ############################################ print("=== Loading with LlamaForCausalLM + config ===") # Get config from the same checkpoint # Build Llama model directly model_llama = LlamaForCausalLM(config).cuda() model_llama.eval() # Load the same weights that AutoModelForCausalLM used model_auto_temp = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=dtype) model_llama.load_state_dict(model_auto_temp.state_dict()) del model_auto_temp torch.cuda.empty_cache() with torch.no_grad(): out_llama = model_llama(**inputs) logits_llama = out_llama.logits ############################################ # C) Compare the Logits ############################################ # Compute maximum absolute difference max_diff = (logits_auto - logits_llama).abs().max() print(f"\nMax absolute difference between logits: {max_diff.item()}") if max_diff < 1e-7: print("→ The logits are effectively identical (within floating-point precision).") else: print("→ There is a non-trivial difference in logits!")
HeteroData( user={ x=[100, 16] }, keyword={ x=[321, 16] }, tweet={ x=[1000, 16] }, (user, follow, user)={ edge_index=[2, 291] }, (user, tweetedby, tweet)={ edge_index=[2, 1000] }, (keyword, haskeyword, tweet)={ edge_index=[2, 3752] } )
如何在共享内存中立即创建pytorch张量? 我需要创建一个pytorch张量(CPU)并为其分配空间。张量是多形的,仅适合RAM一次。 我需要共享它,因为它后来由数据检索工人使用。
我在运行此代码时会出现错误,很可能是因为张张器隐含地复制到共享内存,第二份副本不合适。如果我出于相同的原因,我会在此张量上拨打此张量完全相同的错误。
pytorch,安装在Windows 10,Conda和Cuda 9.0上。 当我运行conda安装pytorch cuda90 -c pytorch时,CMD没有抱怨,然后当我运行pip3 install torchvision时,我会收到此错误消息。