PyTorch是一个深度学习框架,它实现了一个动态计算图,它允许您改变神经网络在运行中的行为方式,并能够执行向后自动区分。
torch.nn.function 与 torch.nn - Pytorch
在 Pytorch 中添加损失时,我在 torch.nn.Functional 和 torch.nn 中具有相同的功能。有什么区别? torch.nn.CrossEntropyLoss() 和 torch.nn.function.cross_entropy
我有一个名为“k1”的张量,其形状为 3,1,1,9,还有 p1 张量,其形状为 3,7,9,9,我想知道下面的行是做什么的? p1 = p1 .masked_fill(k1== 0, float("-1e30...
我正在关注 Pytorch seq2seq 教程,并使用 ittorch.bmm 方法,如下所示: attn_applied = torch.bmm(attn_weights.unsqueeze(0), 编码器输出.unsqueeze(0)) 我明白...
我正在尝试实现这个功能,但没有成功。我正在使用一个 VAE 模型,同时还有编码器和解码器。我正在冻结 VAE 解码器的权重,并且
我正在尝试以端到端的方式训练两阶段模型。但是,我想更新具有不同损失的模型的不同阶段。例如,假设端到端模型由...组成
如何在具有相同 CUDA 的虚拟环境中设置 TF 和 Torch
我想在一个具有相同 CUDA 的虚拟环境中设置 TensorFlow 和 pytorch。但是,我找不到可以同时支持tensorflow和pytorch的CUDA版本:对于tensorflow 2.10,我选择了...
我在 Azure Synapse 中有一个笔记本正在使用这些库 将 pandas 导入为 pd 将 numpy 导入为 np 从 sqlalchemy 导入 create_engine, 文本 将 sqlalchemy 导入为 sa 来自 azure.core.credentials
使用自定义容器将基于 Flask 的机器学习模型部署到 Vertex AI 端点时遇到问题
我正在部署一个 Flask 应用程序,该应用程序使用 PyTorch 提供机器学习模型(打包为 Docker 容器)到 Vertex AI 端点以进行在线预测。尽管 烧瓶
我找不到任何有关 jaxtyping 入门的说明或教程。我尝试了最简单的程序,但无法解析。我使用的是Python 3.11。我在 GitHub jaxtyp 上没有看到任何内容...
我想在win 10上用uv安装pytorch。 首先我用 pip 测试了它并且它有效。我用过: pip3 安装 torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124 比,我
我需要在预处理中计算大量句子(比如说10K)的嵌入,并且在运行时我必须一次计算一个句子的嵌入向量(用户查询),然后...
Pytorch(目前版本为1.1)中的LSTM和LSTMCell有什么区别?看起来 LSTMCell 是 LSTM 的一个特例(即只有一层、单向、无 dropout)。 然后,...
我尝试用 pytorch 从头开始制作我的 UNET。我的模型输出除了黑色面具之外什么也没有。我需要对汽车的损坏进行分段,因此我实现了彩色图。我确信 70% 的事情是......
我发现在 CPU 上进行复值矩阵向量乘法时 pyTorch 比 numpy 慢得多: 一些注意事项: 这对我来说在多个系统中都是如此 内存不是问题 复杂
pytorch s3fd pga_attack,loss.backward()获取grad.data的问题
来自检测.sfd 导入 sfd_Detector def pgd_attack(模型,input_data,eps=0.03,alpha=0.01,attack_steps=1,device='cpu'): ta = input_data.requires_grad_(True).to(设备) 扰动 = ...
我正在尝试使用 Ray 来调整我的 Pytorch 模型。当我尝试运行 tune.run 函数时,它会抛出错误 PicklingError: Can't pickle 我正在尝试使用 Ray 来调整我的 Pytorch 模型。当我尝试运行 tune.run 函数时,它会抛出错误 PicklingError: Can't pickle <cyfunction LocalFileSystem._reconstruct at 0x7f7d0c8ce4d0>: it's not the same object as pyarrow._fs.LocalFileSystem._reconstruct。调优的代码主要基于pytorchs教程here。我在教程中导入 from ray.air import Checkpoint 时遇到了问题,所以我将其切换为 from ray.train import Checkpoint 这是完整的错误消息: 2023-12-30 20:12:57,961 WARNING tune_controller.py:743 -- Trial controller checkpointing failed: Can't pickle <cyfunction LocalFileSystem._reconstruct at 0x7f7d0c8ce4d0>: it's not the same object as pyarrow._fs.LocalFileSystem._reconstruct --------------------------------------------------------------------------- TypeError Traceback (most recent call last) File /usr/local/lib/python3.10/dist-packages/ray/tune/utils/serialization.py:19, in TuneFunctionEncoder.default(self, obj) 18 try: ---> 19 return super(TuneFunctionEncoder, self).default(obj) 20 except Exception: File /usr/lib/python3.10/json/encoder.py:179, in JSONEncoder.default(self, o) 161 """Implement this method in a subclass such that it returns 162 a serializable object for ``o``, or calls the base implementation 163 (to raise a ``TypeError``). (...) 177 178 """ --> 179 raise TypeError(f'Object of type {o.__class__.__name__} ' 180 f'is not JSON serializable') TypeError: Object of type StorageContext is not JSON serializable During handling of the above exception, another exception occurred: PicklingError Traceback (most recent call last) Cell In[97], line 16 14 # ... 15 data_dir = os.path.abspath(os. getcwd()) ---> 16 result = tune.run( 17 train_ray, 18 resources_per_trial={"gpu": gpus_per_trial}, 19 num_samples=10, 20 scheduler=scheduler, 21 keep_checkpoints_num=10 22 ) 23 best_trial = result.get_best_trial("loss", "min", "last") 24 print(f"Best trial config: {best_trial.config}") File /usr/local/lib/python3.10/dist-packages/ray/tune/tune.py:1002, in run(run_or_experiment, name, metric, mode, stop, time_budget_s, config, resources_per_trial, num_samples, storage_path, storage_filesystem, search_alg, scheduler, checkpoint_config, verbose, progress_reporter, log_to_file, trial_name_creator, trial_dirname_creator, sync_config, export_formats, max_failures, fail_fast, restore, resume, reuse_actors, raise_on_failed_trial, callbacks, max_concurrent_trials, keep_checkpoints_num, checkpoint_score_attr, checkpoint_freq, checkpoint_at_end, chdir_to_trial_dir, local_dir, _remote, _remote_string_queue, _entrypoint) 991 pass 992 else: 993 logger.warning( 994 "Tune detects GPUs, but no trials are using GPUs. " 995 "To enable trials to use GPUs, wrap `train_func` with " 996 "`tune.with_resources(train_func, resources_per_trial={'gpu': 1})` " 997 "which allows Tune to expose 1 GPU to each trial. " 998 "For Ray AIR Trainers, you can specify GPU resources " 999 "through `ScalingConfig(use_gpu=True)`. " 1000 "You can also override " 1001 "`Trainable.default_resource_request` if using the " -> 1002 "Trainable API." 1003 ) 1005 experiment_interrupted_event = _setup_signal_catching() 1007 if progress_reporter and air_verbosity is not None: File /usr/local/lib/python3.10/dist-packages/ray/tune/execution/tune_controller.py:744, in TuneController.step(self) 742 except Exception as e: 743 logger.warning(f"Trial controller checkpointing failed: {str(e)}") --> 744 raise e 746 self._iteration += 1 748 with warn_if_slow("on_step_end"): File /usr/local/lib/python3.10/dist-packages/ray/tune/execution/tune_controller.py:741, in TuneController.step(self) 739 # Maybe save experiment state 740 try: --> 741 self.checkpoint() 742 except Exception as e: 743 logger.warning(f"Trial controller checkpointing failed: {str(e)}") File /usr/local/lib/python3.10/dist-packages/ray/tune/execution/tune_controller.py:478, in TuneController.checkpoint(self, force, wait) 452 """Saves execution state to the local experiment path. 453 454 Overwrites the current session checkpoint, which starts when self (...) 463 464 """ 465 with warn_if_slow( 466 "experiment_checkpoint", 467 message="Checkpointing the experiment state took " (...) 476 disable=self._checkpoint_manager.auto_checkpoint_enabled or force or wait, 477 ): --> 478 self._checkpoint_manager.checkpoint( 479 save_fn=self.save_to_dir, force=force, wait=wait 480 ) File /usr/local/lib/python3.10/dist-packages/ray/tune/execution/experiment_state.py:224, in _ExperimentCheckpointManager.checkpoint(self, save_fn, force, wait) 218 # NOTE: This context manager is for Datasets captured in a trial config. 219 # This is the case when *tuning over datasets*. 220 # If the datasets have already been full executed, then serializing 221 # block refs means that this checkpoint is not usable in a new Ray cluster. 222 # This context will serialize the dataset execution plan instead, if available. 223 with out_of_band_serialize_dataset(): --> 224 save_fn() 226 # Sync to cloud 227 self.sync_up(force=force, wait=wait) File /usr/local/lib/python3.10/dist-packages/ray/tune/execution/tune_controller.py:355, in TuneController.save_to_dir(self) 350 experiment_dir = self._storage.experiment_local_path 352 # Get state from trial executor and runner 353 runner_state = { 354 # Trials --> 355 "trial_data": list(self._get_trial_checkpoints().values()), 356 # Experiment data 357 "runner_data": self.__getstate__(), 358 # Metadata 359 "stats": { 360 "start_time": self._start_time, 361 "timestamp": self._last_checkpoint_time, 362 }, 363 } 365 tmp_file_name = os.path.join( 366 experiment_dir, f".tmp_experiment_state_{uuid.uuid4()}" 367 ) 369 with open(tmp_file_name, "w") as f: File /usr/local/lib/python3.10/dist-packages/ray/tune/execution/tune_controller.py:803, in TuneController._get_trial_checkpoints(self) 801 def _get_trial_checkpoints(self) -> Dict[str, str]: 802 for trial in self._trials_to_cache: --> 803 self._trial_metadata[trial.trial_id] = trial.get_json_state() 804 self._trials_to_cache.clear() 805 return self._trial_metadata File /usr/local/lib/python3.10/dist-packages/ray/tune/experiment/trial.py:964, in Trial.get_json_state(self) 962 state = self.__getstate__() 963 state.pop("run_metadata", None) --> 964 self._state_json = json.dumps(state, indent=2, cls=TuneFunctionEncoder) 966 runtime_metadata_json = self.run_metadata.get_json_state() 968 return self._state_json, runtime_metadata_json File /usr/lib/python3.10/json/__init__.py:238, in dumps(obj, skipkeys, ensure_ascii, check_circular, allow_nan, cls, indent, separators, default, sort_keys, **kw) 232 if cls is None: 233 cls = JSONEncoder 234 return cls( 235 skipkeys=skipkeys, ensure_ascii=ensure_ascii, 236 check_circular=check_circular, allow_nan=allow_nan, indent=indent, 237 separators=separators, default=default, sort_keys=sort_keys, --> 238 **kw).encode(obj) File /usr/lib/python3.10/json/encoder.py:201, in JSONEncoder.encode(self, o) 199 chunks = self.iterencode(o, _one_shot=True) 200 if not isinstance(chunks, (list, tuple)): --> 201 chunks = list(chunks) 202 return ''.join(chunks) File /usr/lib/python3.10/json/encoder.py:431, in _make_iterencode.<locals>._iterencode(o, _current_indent_level) 429 yield from _iterencode_list(o, _current_indent_level) 430 elif isinstance(o, dict): --> 431 yield from _iterencode_dict(o, _current_indent_level) 432 else: 433 if markers is not None: File /usr/lib/python3.10/json/encoder.py:405, in _make_iterencode.<locals>._iterencode_dict(dct, _current_indent_level) 403 else: 404 chunks = _iterencode(value, _current_indent_level) --> 405 yield from chunks 406 if newline_indent is not None: 407 _current_indent_level -= 1 File /usr/lib/python3.10/json/encoder.py:438, in _make_iterencode.<locals>._iterencode(o, _current_indent_level) 436 raise ValueError("Circular reference detected") 437 markers[markerid] = o --> 438 o = _default(o) 439 yield from _iterencode(o, _current_indent_level) 440 if markers is not None: File /usr/local/lib/python3.10/dist-packages/ray/tune/utils/serialization.py:23, in TuneFunctionEncoder.default(self, obj) 21 if log_once(f"tune_func_encode:{str(obj)}"): 22 logger.debug("Unable to encode. Falling back to cloudpickle.") ---> 23 return self._to_cloudpickle(obj) File /usr/local/lib/python3.10/dist-packages/ray/tune/utils/serialization.py:28, in TuneFunctionEncoder._to_cloudpickle(self, obj) 25 def _to_cloudpickle(self, obj): 26 return { 27 "_type": "CLOUDPICKLE_FALLBACK", ---> 28 "value": binary_to_hex(cloudpickle.dumps(obj)), 29 } File /usr/local/lib/python3.10/dist-packages/ray/cloudpickle/cloudpickle_fast.py:88, in dumps(obj, protocol, buffer_callback) 86 with io.BytesIO() as file: 87 cp = CloudPickler(file, protocol=protocol, buffer_callback=buffer_callback) ---> 88 cp.dump(obj) 89 return file.getvalue() File /usr/local/lib/python3.10/dist-packages/ray/cloudpickle/cloudpickle_fast.py:733, in CloudPickler.dump(self, obj) 731 def dump(self, obj): 732 try: --> 733 return Pickler.dump(self, obj) 734 except RuntimeError as e: 735 if "recursion" in e.args[0]: PicklingError: Can't pickle <cyfunction LocalFileSystem._reconstruct at 0x7f7d0c8ce4d0>: it's not the same object as pyarrow._fs.LocalFileSystem._reconstruc 这是我的模型: class TransformerClassifier(nn.Module): def __init__(self, num_features=24, num_classes=3, heads=8): super().__init__() self.conv_backbone = nn.Sequential( nn.Conv1d(num_features, 128, 10, stride=8, bias=False), nn.BatchNorm1d(128), nn.LeakyReLU(), nn.Conv1d(128, 256, 10, stride=8, bias=False), nn.BatchNorm1d(256), nn.LeakyReLU(), ) self.transformer = nn.TransformerEncoder( nn.TransformerEncoderLayer(256, nhead=heads, dim_feedforward=1024, batch_first=True), num_layers=6) self.classifier = nn.Linear(256, num_classes) def forward(self, x): x = x.float() # convolutional feature extractor x = self.conv_backbone(x) # transformer encoder x = torch.transpose(x, 1, 2) x = self.transformer(x) # linear classifier x = x.mean(1) x = self.classifier(x) return x 这是我调整模型的代码: from functools import partial import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import random_split from ray import tune import ray.util import ray.air from ray.train import Checkpoint from ray.air import session from ray.tune.schedulers import ASHAScheduler def train_ray(config): use_weighting = True best_f1s = [] class_f1s = [] all_accs = [] batch_size = int(config["batch_size"]) tr_label = open('labelTrain.pickle', 'rb') train_label = pickle.load(tr_label) tr_pickle= open('train_d.pickle', "rb") train_d = pickle.load(tr_pickle) vl_label = open('labelVal.pickle', 'rb') val_label = pickle.load(vl_label) print(np.unique(val_label)) vl_pickle= open('val_d.pickle', "rb") val_d = pickle.load(vl_pickle) t_label = open('labelTest.pickle', 'rb') test_label = pickle.load(t_label) t_pickle= open('test_d.pickle', "rb") test_d = pickle.load(t_pickle) dataset_train =torch.utils.data.TensorDataset(train_d, train_label) dataset_test = torch.utils.data.TensorDataset(test_d, test_label) dataset_val = torch.utils.data.TensorDataset(val_d, val_label) train_dataloader = torch.utils.data.DataLoader(dataset_train, batch_size) val_dataloader = torch.utils.data.DataLoader(dataset_val, batch_size) test_dataloader = torch.utils.data.DataLoader(dataset_test, batch_size) train_labels = train_label # Calculate Weights for Loss weights = None if use_weighting: x = torch.reciprocal(torch.bincount(torch.tensor(train_labels.long()))).float()**0.25 x/=x.mean() weights = x # Create Model model = TransformerClassifier(num_features=24, num_classes=3, heads=config["heads"]) checkpoint = session.get_checkpoint() if checkpoint: checkpoint_state = checkpoint.to_dict() start_epoch = checkpoint_state["epoch"] model.load_state_dict(checkpoint_state["model_state_dict"]) optimizer.load_state_dict(checkpoint_state["optimizer_state_dict"]) else: start_epoch = 0 epoch =int(config["epoch"]) lr=config["lr"] for epoch in range(start_epoch,10): train_f1, train_acc, f1, loss, optimizer = train_optuna(model, epoch, train_dataloader, val_dataloader,test_dataloader, lr_decay=0.98, lr=lr,device="cuda",weights=weights) checkpoint_data = { "epoch": epoch, "net_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), } checkpoint = Checkpoint.from_dict(checkpoint_data) session.report( {"loss": loss, "accuracy": train_acc, "f1_score": f1}, checkpoint=checkpoint, ) print("Finished Training") config = { "heads":tune.choice([8,16]), "lr": tune.loguniform(1e-6, 1e-3), "batch_size": tune.choice([16, 32, 8]) } scheduler = ASHAScheduler( metric="loss", mode="min", max_t=20, grace_period=1, reduction_factor=2, ) gpus_per_trial = 1 data_dir = os.path.abspath(os. getcwd()) result = tune.run( train_ray, resources_per_trial={"gpu": gpus_per_trial}, num_samples=10, scheduler=scheduler, keep_checkpoints_num=8 ) 根据 Pytorch 教程,我应该使用 checkpoint_at_end=True。然而,这也给了我一个错误。我正在 Docker 容器中的 jupyter 笔记本中运行代码。 docker 容器连接到一个卷。 老实说我没有收到错误消息。我将不胜感激任何形式的帮助。 我认为关键问题在于错误消息上说 StorageContext 不是 JSON 可序列化?
我安装了Python 3.11,然后用CUDA重新编译了OpenCV。我也在使用 CUDA 开发 YOLO,但现在当我使用 CUDA 运行 PyTorch 12.4 时,我遇到了 YOLO 错误: 无法加载系统...
我只是想比较图像的像素,如果该像素是粉红色的(R值= 0.502,G值= 0.0,B值= 0.502),则将其更改为黑色,否则将其更改为白色。之后...
如何在 PyTorchLightning 中手动指定检查点路径
目前我正在使用 TensorBoardLogger 来满足我的所有需求,它很完美,但我不喜欢它处理检查点命名的方式。我希望能够指定文件名和文件夹...
我有一个张量是: t = torch.tensor([1, 2, 3]) 和映射: 映射 = {1: 0.2, 2: 1.2, 3: 3.0} 我想通过映射来映射 t 中的元素,因此预期结果将是 火炬.张量([0.2,...