numpy 相关问题

NumPy是Python编程语言的科学和数字计算扩展。



如何在两个具有相同像素大小的RGB图像之间产生一个三角图?

I有两个RGB图像,表示某些几何形状上的标量变量的图。我的目标是找到一种方法来绘制两个图像之间的变量差异并用自定义

回答 1 投票 0



numpy.random-尺寸和形状混乱

i正在浏览一些代码,并看到了这条线Numpy.random.normal(size = x.Shape)。其中,x = numpy.linspace(1,2,100)。我不明白这是什么。我只遇到了np.random.normal(

回答 1 投票 0

没有模块名称'tensorflow'

为运行代码的要求是

回答 1 投票 0

当我创建一个numpy浮子的数组时,我会得到一个pythonfloats

代码: 导入系统 导入numpy作为NP 打印(f“我们使用python {sys.version}”,file = sys.stderr) 打印(f“我们使用的是numpy版本{np .__版本__}”,file = sys.stderr)#2 ...

回答 1 投票 0

在BigQuery GCP的“纽约出租车旅行”项目上,将2个COLS转换为DateTime64 [ns]格式,来自时间戳[US,TZ = UTC] [PYARROW]

**在GCP的BigQuery开展“纽约出租车旅行”项目。 **数据有2列: - 拾取时间和下降时间[让我们考虑DF变量] ** df.info()表示两个col的格式...

回答 1 投票 0

如何创建具有特定特征值和特征向量的矩阵?

是否可以找到具有固定特征值和特征向量的矩阵? 我已经搜索了很多,但是找不到答案,所以我问。

回答 1 投票 0

理解yolov11张量量形状用于后处理

I尝试将Yolov11模型导出到TensorFlow,它说: 具有输入形状(1,3,640,640)BCHW和输出形状的“ Yolo11n.pt”(1,1,84,8400)(5.4 MB)(5.4 MB) 现在,我在Keras 3中有此模型摘要: 模型:...

回答 1 投票 0


如何编写向量函数以应用F(x,y)操作?

Scalar_Function只能处理标量输入,我们可以使用函数np.vectorize()将其转换为矢量化函数。请注意,NP.Dectorize()的输入参数应该是标量函数...

回答 3 投票 0

我使用以下代码:

用#的最终印刷和解释是荷兰语,这并不重要。当我尝试运行它时,我会收到以下错误:

回答 1 投票 0


matplotlib多边形:旋转后多边形偏斜

import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection import numpy as np # Create a new figure with 3D projection fig = plt.figure() ax = fig.add_subplot(111, projection='3d') def rotate_shape_to_normal(vertices, face_indices, target_normal): """ Rotate vertices so that the face specified by face_indices becomes normal to target_normal. :param vertices: List or numpy array of 3D points defining the shape :param face_indices: Indices of the vertices that form the face to align :param target_normal: The vector to which the face should be normal :return: Rotated vertices """ vertices = np.array(vertices) # Convert to numpy array if it isn't already face_vertices = vertices[face_indices] # Calculate the normal vector of the face v1 = face_vertices[1] - face_vertices[0] v2 = face_vertices[2] - face_vertices[0] face_normal = np.cross(v1, v2) print(face_normal) ax.quiver(*face_vertices[0], *face_normal, color='r', length=2) ax.quiver(*face_vertices[0], *target_normal, color='b', length=2) face_normal = face_normal / np.linalg.norm(face_normal) # Normalize # Normalize target_normal for consistency target_normal = target_normal / np.linalg.norm(target_normal) # Compute the rotation axis (perpendicular to both vectors) rotation_axis = np.cross(face_normal, target_normal) rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)# if np.linalg.norm(rotation_axis) > 0 else np.array([1, 0, 0]) # Default to x-axis if parallel print("rotation_axis", rotation_axis) # Compute the angle between the vectors cos_theta = np.dot(face_normal, target_normal) print("cos_theta", np.degrees(cos_theta)) theta = np.arccos(np.clip(cos_theta, -1.0, 1.0)) # Clip to avoid floating-point issues print("theta", np.degrees(theta)) # Check if vectors are already aligned or opposite if np.isclose(theta, 0) or np.isclose(theta, np.pi): return vertices # No rotation needed # Rodrigues' rotation formula K = np.array([ [0, -rotation_axis[2], rotation_axis[1]], [rotation_axis[2], 0, -rotation_axis[0]], [-rotation_axis[1], rotation_axis[0], 0] ]) rotation_matrix = np.sin(theta) * K + (1 - np.cos(theta)) * np.outer(rotation_axis, rotation_axis) # Apply the rotation to all vertices return np.dot(vertices, rotation_matrix.T) # Define the vertices for a simple satellite model: vertices = np.array([ # Main body (cube) (0, 0, 0), # 0 - Base, front-left (1, 0, 0), # 1 - Base, front-right (1, 1, 0), # 2 - Base, back-right (0, 1, 0), # 3 - Base, back-left (0, 0, 1), # 4 - Top, front-left (1, 0, 1), # 5 - Top, front-right (1, 1, 1), # 6 - Top, back-right (0, 1, 1), # 7 - Top, back-left # Solar panels # Left panel (0.5, .25, -1.5), # 8 (0.5, .75, -1.5), # 9 (0.5, .75, 0), # 10 (0.5, .25, 0), # 11 # Right panel (0.5, .25, 2.5), # 12 (0.5, .75, 2.5), # 13 (0.5, .75, 1), # 14 (0.5, .25, 1) # 15 ]) # Translate spacecraft to origin vertices = [(x - .5, y - .5, z - .5) for x, y, z in vertices] # Original points ax.scatter(vertices[5][0], vertices[5][1],vertices[5][2], color='green', s=25) ax.scatter(vertices[1][0], vertices[1][1],vertices[1][2], color='green', s=25) ax.scatter(vertices[4][0], vertices[4][1],vertices[4][2], color='green', s=25) # Rotate spacecraft to point at specified vector face_to_align = [5, 1, 4] # Indexes of points that define the face I want to be normal to the specified vector (-Y) #vector = np.array([0, 0, 1]) # This rotation doesn't skew anything vector = np.array([0.56167836, 0.76075023, 0.32523301]) # This rotation skews everything vertices = rotate_shape_to_normal(vertices, face_to_align, vector) # Rotated points ax.scatter(vertices[5][0], vertices[5][1],vertices[5][2], color='blue', s=25) ax.scatter(vertices[1][0], vertices[1][1],vertices[1][2], color='blue', s=25) ax.scatter(vertices[4][0], vertices[4][1],vertices[4][2], color='blue', s=25) # Faces for the cube cube_faces = [ [vertices[0], vertices[1], vertices[5], vertices[4]], # (-Y) [vertices[1], vertices[2], vertices[6], vertices[5]], # (+X) [vertices[2], vertices[3], vertices[7], vertices[6]], # (+Y) [vertices[3], vertices[0], vertices[4], vertices[7]], # (-X) [vertices[0], vertices[1], vertices[2], vertices[3]], # (-Z) [vertices[4], vertices[5], vertices[6], vertices[7]], # (+Z) ] # Solar panel faces - note these are just rectangles left_panel = [vertices[8], vertices[9], vertices[10], vertices[11]] right_panel = [vertices[12], vertices[13], vertices[14], vertices[15]] # Combine all faces faces = cube_faces + [left_panel, right_panel] # Create Poly3DCollection poly3d = Poly3DCollection(faces, alpha=0.7) poly3d.set_edgecolor('k') # Set face color for different parts poly3d.set_facecolor([[1, 0, 0], [.7, .7, .7], [.7, .7, .7], [.7, .7, .7], [.7, .7, .7], [.7, .7, .7], [0, 0.5, 1], [0, 0.5, 1]]) ax.add_collection3d(poly3d) # Set the aspect ratio to ensure it looks like a cube ax.set_box_aspect((1, 1, 1)) # Remove axes for a cleaner look #ax.set_axis_off() # Set limits to see everything ax.set_xlim(-1, 2) ax.set_ylim(-1, 2) ax.set_zlim(-1, 2) # Origin ax.scatter(0, 0, 0, color='red', s=25) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # Adjust view for better visualization ax.view_init(elev=20., azim=-45) plt.show()

回答 1 投票 0

在下面找到两个截然不同的执行时间 导入numpy作为NP 进口时间 阵列= np.Arange(0,750000) param = 20000 t1 = time.time() 对于_范围(参数): 阵列

import numpy as np import time array = np.arange(0, 750000) param = 20000 t1 = time.time() for _ in range(param): array <= 120 print(round(time.time() - t1), _) # 9 19999 t2 = time.time() for _ in range(param): array - 120 <= 0 print(round(time.time() - t2), _) # 19 19999 <= 120 print...

回答 1 投票 0

我正在处理一个工作提交脚本,该脚本处理扭矩和slurm簇以及本地硬件上的平行模型拟合(带有Scipy.optimize)。前两个工作很好,但是后者给了我一些问题。 我的方法如下:

I将数据分为n个块,每个块对应于M RV的相等部分。假设n = 2,m = 100,所以我得到了两个带有50架RV的块。我使用CloudPickle保存块。

回答 0 投票 0

回答 1 投票 0


最新问题
© www.soinside.com 2019 - 2025. All rights reserved.